A hybrid parametric, non-parametric approach to Bayesian target tracking

被引:3
|
作者
Black, JV
Reed, CM
机构
关键词
D O I
10.1109/ADFS.1996.581103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article describes a versatile approach to non-linear, non-Gaussian noise target tracking which makes use of both parametric and non-parametric techniques within a Bayesian framework. It produces a Gaussian mixture model (GMM) of a track, but resorts to a sampling technique within the tracking process to handle nonlinearity. GMMs are recovered from samples using the expectation-maximisation method. The approach has been implemented in PV-WANE software and tested against a Kalman-filter tracker in a simulator with air-defence scenarios. Sample results are presented for a scenario with a single surveillance-radar and a single target following a weaving path. These show that the tracker produces significantly better position estimates and comparable heading and speed estimates. Computation times are about 30 times greater than for the Kalman-filter tracker, but there is scope for reducing that substantially by tolerating fewer samples.
引用
收藏
页码:178 / 183
页数:6
相关论文
共 50 条
  • [21] Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
    Koskela, Jere
    Jenkins, Paul A.
    Spano, Dario
    [J]. BERNOULLI, 2018, 24 (03) : 2122 - 2153
  • [22] Experimental comparison of parametric, non-parametric, and hybrid multigroup classification
    Pai, Dinesh R.
    Lawrence, Kenneth D.
    Klimberg, Ronald K.
    Lawrence, Sheila M.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8593 - 8603
  • [23] A Bayesian non-parametric comparison of two treatments
    Damien, P
    Walker, S
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 51 - 56
  • [24] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [25] Smoothness in Bayesian Non-parametric Regression with Wavelets
    Marco Di Zio
    Arnoldo Frigessi
    [J]. Methodology And Computing In Applied Probability, 1999, 1 (4) : 391 - 405
  • [26] A non-parametric structural hybrid modeling approach for electricity prices
    Moazeni, S.
    Coulon, M.
    Rueda, I. Arciniegas
    Song, B.
    Powell, W. B.
    [J]. QUANTITATIVE FINANCE, 2016, 16 (02) : 213 - 230
  • [27] Bayesian non-parametric methods for dynamic state-noise covariance matrix estimation: Application to target tracking
    Magnant, Clement
    Giremus, Audrey
    Grivel, Eric
    Ratton, Laurent
    Joseph, Bernard
    [J]. SIGNAL PROCESSING, 2016, 127 : 135 - 150
  • [28] Sequential Embedding Induced Text Clustering, a Non-parametric Bayesian Approach
    Duan, Tiehang
    Lou, Qi
    Srihari, Sargur N.
    Xie, Xiaohui
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT III, 2019, 11441 : 68 - 80
  • [29] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [30] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305