A hybrid parametric, non-parametric approach to Bayesian target tracking

被引:3
|
作者
Black, JV
Reed, CM
机构
关键词
D O I
10.1109/ADFS.1996.581103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article describes a versatile approach to non-linear, non-Gaussian noise target tracking which makes use of both parametric and non-parametric techniques within a Bayesian framework. It produces a Gaussian mixture model (GMM) of a track, but resorts to a sampling technique within the tracking process to handle nonlinearity. GMMs are recovered from samples using the expectation-maximisation method. The approach has been implemented in PV-WANE software and tested against a Kalman-filter tracker in a simulator with air-defence scenarios. Sample results are presented for a scenario with a single surveillance-radar and a single target following a weaving path. These show that the tracker produces significantly better position estimates and comparable heading and speed estimates. Computation times are about 30 times greater than for the Kalman-filter tracker, but there is scope for reducing that substantially by tolerating fewer samples.
引用
收藏
页码:178 / 183
页数:6
相关论文
共 50 条
  • [31] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [32] Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach
    Macaro, Christian
    Prado, Raquel
    [J]. PSYCHOMETRIKA, 2014, 79 (01) : 105 - 129
  • [33] Extraction of Hierarchical Behavior Patterns Using a Non-parametric Bayesian Approach
    Briones, Jeric
    Kubo, Takatomi
    Ikeda, Kazushi
    [J]. FRONTIERS IN COMPUTER SCIENCE, 2020, 2
  • [34] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [35] Non-Parametric Bayesian Constrained Local Models
    Martins, Pedro
    Caseiro, Rui
    Batista, Jorge
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1797 - 1804
  • [36] Non-parametric Bayesian super-resolution
    Lane, R. O.
    [J]. IET RADAR SONAR AND NAVIGATION, 2010, 4 (04): : 639 - 648
  • [37] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095
  • [38] A Bayesian non-parametric stochastic frontier model
    Assaf, A. George
    Tsionas, Mike
    Kock, Florian
    Josiassen, Alexander
    [J]. ANNALS OF TOURISM RESEARCH, 2021, 87
  • [39] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatarinova, Tatiana
    Neely, Michael
    Bartroff, Jay
    van Guilder, Michael
    Yamada, Walter
    Bayard, David
    Jelliffe, Roger
    Leary, Robert
    Chubatiuk, Alyona
    Schumitzky, Alan
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (02) : 189 - 199
  • [40] On Parametric (and Non-Parametric) Variation
    Smith, Neil
    Law, Ann
    [J]. BIOLINGUISTICS, 2009, 3 (04): : 332 - 343