Comment on "Geometric derivation of the quantum speed limit"

被引:57
|
作者
Zwierz, Marcin [1 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
D O I
10.1103/PhysRevA.86.016101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, Jones and Kok [Jones and Kok, Phys. Rev. A 82, 022107 (2010)] presented alternative geometric derivations of the Mandelstam-Tamm [Mandelstam and Tamm, J. Phys. (USSR) 9, 249 (1945)] and Margolus-Levitin [Margolus and Levitin, Phys. D 120, 188 (1998)] inequalities for the quantum speed of dynamical evolution. The Margolus-Levitin inequality followed from an upper bound on the rate of change of the statistical distance between two arbitrary pure quantum states. We show that the derivation of this bound is incorrect. Subsequently, we provide two upper bounds on the rate of change of the statistical distance, expressed in terms of the standard deviation of the generator K and its expectation value above the ground state. The bounds lead to the Mandelstam-Tamm inequality and a quantum speed limit which is only slightly weaker than the Margolus-Levitin inequality.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Comparing planar quantum computing platforms at the quantum speed limit
    Basilewitsch, Daniel
    Dlaska, Clemens
    Lechner, Wolfgang
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [42] Quantum coherence sets the quantum speed limit for mixed states
    Mondal, Debasis
    Datta, Chandan
    Sazim, Sk
    PHYSICS LETTERS A, 2016, 380 (5-6) : 689 - 695
  • [43] Quantum-speed-limit bounds in an open quantum evolution
    Mirkin, Nicolas
    Toscano, Fabricio
    Wisniacki, Diego A.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [44] Geometric speed limit for fermionic dimer as a hallmark of Coulomb interaction
    Jerzy Dajka
    Quantum Information Processing, 23
  • [45] Testing the unified bounds of the quantum speed limit
    Wu, Yaozu
    Yuan, Jiale
    Zhang, Chuanyu
    Zhu, Zitian
    Deng, Jinfeng
    Zhang, Xu
    Zhang, Pengfei
    Guo, Qiujiang
    Wang, Zhen
    Huang, Jiehui
    Song, Chao
    Li, Hekang
    Wang, Da-Wei
    Wang, H.
    Agarwal, Girish S.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [46] Quantum speed limit via the trajectory ensemble
    Hu, Xianghong
    Sun, Shuning
    Zheng, Yujun
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [47] Limit on the speed of quantum computation in determining parity
    Farhi, E
    Goldstone, J
    Gutmann, S
    Sipser, M
    PHYSICAL REVIEW LETTERS, 1998, 81 (24) : 5442 - 5444
  • [48] Geometric speed limit for fermionic dimer as a hallmark of Coulomb interaction
    Dajka, Jerzy
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)
  • [49] Geometric speed limit for acceleration by natural selection in evolutionary processes
    Hoshino, Masahiro
    Nagayama, Ryuna
    Yoshimura, Kohei
    Yamagishi, Jumpei F.
    Ito, Sosuke
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [50] Quantum speed limit time in a magnetic resonance
    Ivanchenko, E. A.
    PHYSICS LETTERS A, 2017, 381 (46) : 3880 - 3883