Comment on "Geometric derivation of the quantum speed limit"

被引:57
|
作者
Zwierz, Marcin [1 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
D O I
10.1103/PhysRevA.86.016101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, Jones and Kok [Jones and Kok, Phys. Rev. A 82, 022107 (2010)] presented alternative geometric derivations of the Mandelstam-Tamm [Mandelstam and Tamm, J. Phys. (USSR) 9, 249 (1945)] and Margolus-Levitin [Margolus and Levitin, Phys. D 120, 188 (1998)] inequalities for the quantum speed of dynamical evolution. The Margolus-Levitin inequality followed from an upper bound on the rate of change of the statistical distance between two arbitrary pure quantum states. We show that the derivation of this bound is incorrect. Subsequently, we provide two upper bounds on the rate of change of the statistical distance, expressed in terms of the standard deviation of the generator K and its expectation value above the ground state. The bounds lead to the Mandelstam-Tamm inequality and a quantum speed limit which is only slightly weaker than the Margolus-Levitin inequality.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Generalized Geometric Quantum Speed Limits
    Pires, Diego Paiva
    Cianciaruso, Marco
    Celeri, Lucas C.
    Adesso, Gerardo
    Soares-Pinto, Diogo O.
    PHYSICAL REVIEW X, 2016, 6 (02):
  • [22] Quantum Thermodynamic Derivation of the Energy Resolution Limit in Magnetometry
    Kominis, Iannis K.
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [23] Speed limit for open quantum systems
    Funo, Ken
    Shiraishi, Naoto
    Saito, Keiji
    NEW JOURNAL OF PHYSICS, 2019, 21 (01):
  • [24] The speed limit of quantum unitary evolution
    Giovannetti, V
    Lloyd, S
    Maccone, L
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (08) : S807 - S810
  • [25] Precision thermometry and the quantum speed limit
    Campbell, Steve
    Genoni, Marco G.
    Deffner, Sebastian
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (02):
  • [26] Quantum speed limit for complex dynamics
    Mao Zhang
    Huai-Ming Yu
    Jing Liu
    npj Quantum Information, 9
  • [27] Quantum limit on computational time and speed
    Pati, AK
    Jain, SR
    Mitra, A
    Ramanna, R
    PHYSICS LETTERS A, 2002, 301 (3-4) : 125 - 129
  • [28] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [29] Effect of measurements on quantum speed limit
    Srivastav, Abhay
    Pandey, Vivek
    Pati, Arun k.
    EPL, 2024, 146 (06)
  • [30] Operational definition of a quantum speed limit
    Shao, Yanyan
    Liu, Bo
    Zhang, Mao
    Yuan, Haidong
    Liu, Jing
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):