Comment on "Geometric derivation of the quantum speed limit"

被引:57
|
作者
Zwierz, Marcin [1 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
D O I
10.1103/PhysRevA.86.016101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, Jones and Kok [Jones and Kok, Phys. Rev. A 82, 022107 (2010)] presented alternative geometric derivations of the Mandelstam-Tamm [Mandelstam and Tamm, J. Phys. (USSR) 9, 249 (1945)] and Margolus-Levitin [Margolus and Levitin, Phys. D 120, 188 (1998)] inequalities for the quantum speed of dynamical evolution. The Margolus-Levitin inequality followed from an upper bound on the rate of change of the statistical distance between two arbitrary pure quantum states. We show that the derivation of this bound is incorrect. Subsequently, we provide two upper bounds on the rate of change of the statistical distance, expressed in terms of the standard deviation of the generator K and its expectation value above the ground state. The bounds lead to the Mandelstam-Tamm inequality and a quantum speed limit which is only slightly weaker than the Margolus-Levitin inequality.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Quantum speed limit for complex dynamics
    Zhang, Mao
    Yu, Huai-Ming
    Liu, Jing
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [32] Quantum Speed Limit for Physical Processes
    Taddei, M. M.
    Escher, B. M.
    Davidovich, L.
    de Matos Filho, R. L.
    PHYSICAL REVIEW LETTERS, 2013, 110 (05)
  • [33] Quantum speed limit for thermal states
    Il'in, Nikolai
    Lychkovskiy, Oleg
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [34] Finite-time adiabatic processes: Derivation and speed limit
    Plata, Carlos A.
    Guery-Odelin, David
    Trizac, Emmanuel
    Prados, Antonio
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [35] Stronger Quantum Speed Limit for Mixed Quantum States
    Bagchi, Shrobona
    Thakuria, Dimpi
    Pati, Arun Kumar
    ENTROPY, 2023, 25 (07)
  • [36] Quantum speed limit time for correlated quantum channel
    Awasthi, N.
    Haseli, S.
    Johri, U. C.
    Salimi, S.
    Dolatkhah, H.
    Khorashad, A. S.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [37] Quantum speed limit time for correlated quantum channel
    N. Awasthi
    S. Haseli
    U. C. Johri
    S. Salimi
    H. Dolatkhah
    A. S. Khorashad
    Quantum Information Processing, 2020, 19
  • [38] Amplification under the standard quantum limit - Comment
    Nilsson, O
    Karlsson, A
    Poizat, JP
    Berglind, E
    PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1972 - 1972
  • [39] Quantum key distribution in the Holevo limit - Comment
    Fahmi, A.
    Golshani, M.
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [40] Quantum speed limit and stability of coherent states in quantum gravity
    Liegener, Klaus
    Rudnicki, Lukasz
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (12)