Comment on "Geometric derivation of the quantum speed limit"

被引:57
|
作者
Zwierz, Marcin [1 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
D O I
10.1103/PhysRevA.86.016101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, Jones and Kok [Jones and Kok, Phys. Rev. A 82, 022107 (2010)] presented alternative geometric derivations of the Mandelstam-Tamm [Mandelstam and Tamm, J. Phys. (USSR) 9, 249 (1945)] and Margolus-Levitin [Margolus and Levitin, Phys. D 120, 188 (1998)] inequalities for the quantum speed of dynamical evolution. The Margolus-Levitin inequality followed from an upper bound on the rate of change of the statistical distance between two arbitrary pure quantum states. We show that the derivation of this bound is incorrect. Subsequently, we provide two upper bounds on the rate of change of the statistical distance, expressed in terms of the standard deviation of the generator K and its expectation value above the ground state. The bounds lead to the Mandelstam-Tamm inequality and a quantum speed limit which is only slightly weaker than the Margolus-Levitin inequality.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Geometric derivation of the quantum speed limit
    Jones, Philip J.
    Kok, Pieter
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [2] Quantum speed limit and geometric measure of entanglement
    Rudnicki, Lukasz
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [3] Geometric derivation of quantum uncertainty
    Kryukov, A.
    PHYSICS LETTERS A, 2007, 370 (5-6) : 419 - 422
  • [4] Comment on "Modified quantum-speed-limit bounds for open quantum dynamics in quantum channels"
    Mirkin, Nicolas
    Toscano, Fabricio
    Wisniacki, Diego A.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [5] Quantum Speed Limit is Not Quantum
    Okuyama, Manaka
    Ohzeki, Masayuki
    PHYSICAL REVIEW LETTERS, 2018, 120 (07)
  • [6] Geometric Operator Quantum Speed Limit, Wegner Hamiltonian Flow and Operator Growth
    Hornedal, Niklas
    Carabba, Nicoletta
    Takahashi, Kazutaka
    del Campo, Adolfo
    QUANTUM, 2023, 7
  • [7] Geometric Operator Quantum Speed Limit, Wegner Hamiltonian Flow and Operator Growth
    Dai, Bingli
    Zhang, Bo
    Zhang, Yuchi
    Guan, Ming
    Niu, Zhongqian
    Feng, Yinian
    Liu, Yang
    Fan, Yong
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (01) : 275 - 285
  • [8] The quantum speed limit
    Giovannetti, V
    Lloyd, S
    Maccone, L
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 1 - 6
  • [9] Quantum speed limit
    Andreas Trabesinger
    Nature Physics, 2012, 8 (2) : 106 - 106
  • [10] Geometric speed limit of neutrino oscillation
    Khan, Fazeel
    Dajka, Jerzy
    QUANTUM INFORMATION PROCESSING, 2021, 20 (05)