Recently, Jones and Kok [Jones and Kok, Phys. Rev. A 82, 022107 (2010)] presented alternative geometric derivations of the Mandelstam-Tamm [Mandelstam and Tamm, J. Phys. (USSR) 9, 249 (1945)] and Margolus-Levitin [Margolus and Levitin, Phys. D 120, 188 (1998)] inequalities for the quantum speed of dynamical evolution. The Margolus-Levitin inequality followed from an upper bound on the rate of change of the statistical distance between two arbitrary pure quantum states. We show that the derivation of this bound is incorrect. Subsequently, we provide two upper bounds on the rate of change of the statistical distance, expressed in terms of the standard deviation of the generator K and its expectation value above the ground state. The bounds lead to the Mandelstam-Tamm inequality and a quantum speed limit which is only slightly weaker than the Margolus-Levitin inequality.
机构:
Univ Buenos Aires, FCEyN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
Mirkin, Nicolas
Toscano, Fabricio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, RJ, BrazilUniv Buenos Aires, FCEyN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
Toscano, Fabricio
Wisniacki, Diego A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
Univ Buenos Aires, FCEyN, IFIBA, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina