Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

被引:344
|
作者
Gelman, Andrew [1 ]
Lee, Daniel [2 ]
Guo, Jiqiang [2 ]
机构
[1] Columbia Univ, Stat & Polit Sci, New York, NY 10027 USA
[2] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Bayesian inference; hierarchical models; probabilistic programming; statistical computing;
D O I
10.3102/1076998615606113
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers' perspectives and illustrate with a simple but nontrivial nonlinear regression example.
引用
收藏
页码:530 / 543
页数:14
相关论文
共 50 条
  • [41] Bayesian Inference to Sustain Evolvability in Genetic Programming
    Kattan, Ahmed
    Ong, Yew-Soon
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 75 - 87
  • [42] Kind Inference for the FreeST Programming Language
    Almeida, Bernardo
    Mordido, Andreia
    Vasconcelos, Vasco T.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2023, (378): : 1 - 13
  • [43] A Probabilistic Programming Language for Influence Diagrams
    Prestwich, Steven D.
    Toffano, Federico
    Wilson, Nic
    SCALABLE UNCERTAINTY MANAGEMENT (SUM 2017), 2017, 10564 : 252 - 265
  • [44] HackPPL: A Universal Probabilistic Programming Language
    Ai, Jessica
    Arora, Nimar S.
    Dong, Ning
    Gokkaya, Beliz
    Jiang, Thomas
    Kubendran, Anitha
    Kumar, Arun
    Tingley, Michael
    Torabi, Narjes
    PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 20 - 28
  • [45] RankPL: A Qualitative Probabilistic Programming Language
    Rienstra, Tjitze
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2017, 2017, 10369 : 470 - 479
  • [46] GPU-based Parallel Computation of Pharmacometric Models in Stan Software for Bayesian Inference
    Strumbelj, Erik
    Cesnovar, Rok
    Sluga, Davor
    Burton, Jackson
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2018, 45 : S39 - S39
  • [47] Automatic Variational Inference in Stan
    Kucukelbir, Alp
    Ranganath, Rajesh
    Gelman, Andrew
    Blei, David M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [48] Probabilistic brain atlas encoding using Bayesian inference
    Van Leemput, Koen
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 1, 2006, 4190 : 704 - 711
  • [49] Set-valued Bayesian Inference with Probabilistic Equivalence
    Le Capitaine, Hoel
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2132 - 2135
  • [50] Probabilistic ship corrosion wastage model with Bayesian inference
    Kim, Changbeom
    Oterkus, Selda
    Oterkus, Erkan
    Kim, Yooil
    OCEAN ENGINEERING, 2022, 246