Probabilistic brain atlas encoding using Bayesian inference

被引:0
|
作者
Van Leemput, Koen [1 ]
机构
[1] Univ Helsinki, Cent Hosp, Helsinki Med Imaging Ctr, Helsinki, Finland
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. We propose a general mesh-based atlas representation, and compare different atlas models by evaluating their posterior probabilities and the posterior probabilities of their parameters. Using such a Baysian framework, we show that the widely used "average" brain atlases constitute relatively poor priors, partly because they tend to overfit the training data, and partly because they do not allow to align corresponding anatomical features across datasets. We also demonstrate that much more powerful representations can be built using content-adaptive meshes that incorporate non-rigid deformation field models. We believe extracting optimal prior probability distributions from training data is crucial in light of the central role priors play in many automated brain MRI analysis techniques.
引用
收藏
页码:704 / 711
页数:8
相关论文
共 50 条
  • [1] Encoding Probabilistic Brain Atlases Using Bayesian Inference
    Van Leemput, Koen
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (06) : 822 - 837
  • [2] Brain Tissue Segmentation in PET-CT Images Using Probabilistic Atlas and Variational Bayes Inference
    Xia, Yong
    Wang, Jiabin
    Eberl, Stefan
    Fulham, Michael
    Feng, David Dagan
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7969 - 7972
  • [3] Editorial to the special issue on perspectives on human probabilistic inference and the 'Bayesian brain'
    Kwisthout, Johan
    Phillips, William A.
    Seth, Anil K.
    van Rooij, Iris
    Clark, Andy
    [J]. BRAIN AND COGNITION, 2017, 112 : 1 - 2
  • [4] Development of Probabilistic Dam Breach Model Using Bayesian Inference
    Peter, S. J.
    Siviglia, A.
    Nagel, J.
    Marelli, S.
    Boes, R. M.
    Vetsch, D.
    Sudret, B.
    [J]. WATER RESOURCES RESEARCH, 2018, 54 (07) : 4376 - 4400
  • [5] Robust Brain Registration Using Adaptive Probabilistic Atlas
    Ide, Jaime
    Chen, Rong
    Shen, Dinggang
    Herskovits, Edward H.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 1041 - 1049
  • [6] Bayesian inference with probabilistic population codes
    Ma, Wei Ji
    Beck, Jeffrey M.
    Latham, Peter E.
    Pouget, Alexandre
    [J]. NATURE NEUROSCIENCE, 2006, 9 (11) : 1432 - 1438
  • [7] Bayesian probabilistic inference for target recognition
    Chang, KC
    Liu, J
    Zhou, J
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION V, 1996, 2755 : 158 - 165
  • [8] Probabilistic Decline Curve Analysis in the Permian Basin using Bayesian and Approximate Bayesian Inference
    Korde, Anand
    Goddard, Scott D.
    Awoleke, Obadare O.
    [J]. SPE RESERVOIR EVALUATION & ENGINEERING, 2021, 24 (03) : 536 - 551
  • [9] Bayesian inference with probabilistic population codes
    Wei Ji Ma
    Jeffrey M Beck
    Peter E Latham
    Alexandre Pouget
    [J]. Nature Neuroscience, 2006, 9 : 1432 - 1438
  • [10] A probabilistic estimation approach for the failure forecast method using Bayesian inference
    O'Dowd, Niall M.
    Madarshahian, Ramin
    Leung, Michael Siu Hey
    Corcoran, Joseph
    Todd, Michael D.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2021, 142