Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

被引:344
|
作者
Gelman, Andrew [1 ]
Lee, Daniel [2 ]
Guo, Jiqiang [2 ]
机构
[1] Columbia Univ, Stat & Polit Sci, New York, NY 10027 USA
[2] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Bayesian inference; hierarchical models; probabilistic programming; statistical computing;
D O I
10.3102/1076998615606113
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers' perspectives and illustrate with a simple but nontrivial nonlinear regression example.
引用
收藏
页码:530 / 543
页数:14
相关论文
共 50 条
  • [31] Bayesian networks and probabilistic inference in forensic science
    不详
    STATISTICA, 2006, 66 (01) : 116 - 116
  • [32] Comparing probabilistic inference for mixed Bayesian networks
    Chang, KC
    Sun, W
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XII, 2003, 5096 : 346 - 353
  • [33] APPROXIMATING PROBABILISTIC INFERENCE IN BAYESIAN BELIEF NETWORKS
    DAGUM, P
    CHAVEZ, RM
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (03) : 246 - 255
  • [34] Turing: a language for flexible probabilistic inference
    Ge, Hong
    Xu, Kai
    Ghahramani, Zoubin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [35] Pragmatic Language Interpretation as Probabilistic Inference
    Goodman, Noah D.
    Frank, Michael C.
    TRENDS IN COGNITIVE SCIENCES, 2016, 20 (11) : 818 - 829
  • [36] Bayesian networks and probabilistic inference in forensic science
    Gyles, Anthony F.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 1187 - 1189
  • [37] Bayesian optimization for demographic inference
    Noskova, Ekaterina
    Borovitskiy, Viacheslav
    G3-GENES GENOMES GENETICS, 2023, 13 (07):
  • [38] Bayesian Inference Under Ramp Stress Accelerated Life Testing Using Stan
    Abdel-Ghaly, Abdalla
    Aly, Hanan
    Abdel-Rahman, Elham
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2023, 85 (01): : 132 - 174
  • [39] Bayesian Optimization for Probabilistic Programs
    Rainforth, Tom
    Tuan Anh Le
    van de Meent, Jan-Willem
    Osborne, Michael A.
    Wood, Frank
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [40] Probabilistic Programming Inference via Intensional Semantics
    Castellan, Simon
    Paquet, Hugo
    PROGRAMMING LANGUAGES AND SYSTEMS, ESOP 2019: 28TH EUROPEAN SYMPOSIUM ON PROGRAMMING, 2019, 11423 : 322 - 349