Robust Control of the Sit-to-Stand Movement for a Powered Lower Limb Orthosis

被引:10
|
作者
Narvaez Aroche, Octavio [1 ]
Meyer, Pierre-Jean [2 ]
Tu, Stephen [2 ]
Packard, Andrew [1 ]
Arcak, Murat [2 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Hip; Torque; Robots; Measurement; Shoulder; Mathematical model; Robustness; Assistive devices; exoskeletons; iterative learning control (ILC); learning; optimal control; optimization; orthotics; reachability analysis; rehabilitation robotics; sensitivity; uncertain systems; SUIT;
D O I
10.1109/TCST.2019.2945908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The sit-to-stand (STS) movement is a key feature for the wide adoption of powered lower limb orthoses (PLLOs) for patients with complete paraplegia. In this article, we study the control of the ascension phase of the STS movement for a minimally actuated PLLO at the hips. A particularly important objective of the design is to ensure robustness to variations in parameters of the users, such as weight. First, we generate a pool of finite-horizon Linear Quadratic Regulator feedback gains, designed under the assumption that we can control not only the torque at the hips but also the loads at the shoulders that in reality must be applied by the user. Next, we conduct reachability analysis to define a performance metric measuring the robustness of each controller against parameter uncertainty and choose the best controller from the pool with respect to this metric. Of course, in practice, the loads at the shoulder are ultimately provided by the user, while the computer control is only applied to the hips. Therefore, in the second part of this article, we remove the assumption of computer control for the shoulder loads and study how the shoulder actions could be learned by a human during rehabilitation and physical therapy. As an abstraction of this process, we choose an Iterative Learning Control algorithm to replace the nominal shoulder control. Indeed, this algorithm obtains torque and forces at the shoulders that result in successful simulations of the STS movement, regardless of parameter uncertainty and factors deliberately introduced to hinder learning. Thus, it is reasonable to expect that the superior cognitive skills of real users will enable them to cooperate with the hip torque controller through training.
引用
收藏
页码:2390 / 2403
页数:14
相关论文
共 50 条
  • [21] Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis
    Varol, Huseyin Atakan
    Sup, Frank
    Goldfarb, Michael
    2009 IEEE 11TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2009, : 751 - +
  • [22] Impedance Modulation Control of a Lower-Limb Exoskeleton to Assist Sit-to-Stand Movements
    Huo, Weiguang
    Moon, Huiseok
    Alouane, Mohamed Amine
    Bonnet, Vincent
    Huang, Jian
    Amirat, Yacine
    Vaidyanathan, Ravi
    Mohammed, Samer
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (02) : 1230 - 1249
  • [23] Regenerative effects in the Sit-to-Stand and Stand-to-Sit movement
    Wong, Ronnie Joseph
    Smith, James Andrew
    ROBOTICA, 2015, 33 (01) : 107 - 126
  • [24] Feedback Control Design for Robust Comfortable Sit-to-Stand Motions of 3D Lower-Limb Exoskeletons
    Mungai, M. Eva
    Grizzle, Jessy W.
    IEEE ACCESS, 2021, 9 : 122 - 161
  • [25] A ROBOTIC KNEE ORTHOSIS.FOR SIT-TO-STAND ASSISTANCE
    Thapa, Saroj
    Zheng, Hao
    Kogler, Geza F.
    Shen, Xiangrong
    PROCEEDINGS OF THE ASME 9TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2016, VOL 1, 2017,
  • [26] Dynamic Optimization of the Sit-to-Stand Movement
    Yamasaki, Hiroshi R.
    Kambara, Hiroyuki
    Koike, Yasuharu
    JOURNAL OF APPLIED BIOMECHANICS, 2011, 27 (04) : 306 - 313
  • [27] The effects of vision on sit-to-stand movement
    Siriphorn, Akkradate
    Chamonchant, Dannaovarat
    Boonyong, Sujitra
    JOURNAL OF PHYSICAL THERAPY SCIENCE, 2015, 27 (01) : 83 - 86
  • [28] Simulation of Exoskeleton Sit-To-Stand Movement
    Panovko, G. Ya.
    Savin, S. I.
    Yatsun, S. F.
    Yatsun, A. S.
    JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY, 2016, 45 (03) : 206 - 210
  • [29] Determinants of the sit-to-stand movement: A review
    Janssen, WGM
    Bussmann, HBJ
    Stam, HJ
    PHYSICAL THERAPY, 2002, 82 (09): : 866 - 879
  • [30] Sit-to-Stand Movement in Children: A Review
    Neves da Costa, Carolina Souza
    Savelsbergh, Geert
    Cicuto Ferreira Rocha, Nelci Adriana
    JOURNAL OF MOTOR BEHAVIOR, 2010, 42 (02) : 127 - 134