Regenerative effects in the Sit-to-Stand and Stand-to-Sit movement

被引:4
|
作者
Wong, Ronnie Joseph [1 ]
Smith, James Andrew [1 ]
机构
[1] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON, Canada
关键词
Bipeds; Control of robotic systems; Design; Exoskeletons; Humanoid robots; Human biomechanics; Legged robots; Biomimetic robots; WALKING; DYNAMICS; DESIGN; ROBOT;
D O I
10.1017/S026357471400006X
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
While Sit-to-Stand and Stand-to-Sit are routine activities and are crucial pre-requisites to walking and running their underlying dynamics are poorly understood. Furthermore, the potential for using these movements to regenerate energy in energy-sensitive devices such as orthoses, prostheses and humanoid robots has never been examined. Insights in this domain can lead to more energy-efficient prosthesis, orthosis and humanoid robot designs. OBJECTIVES: The objectives are two-fold: first, to determine how much energy can be regenerated during standard movements related to transitions between sitting and standing on a scale humanoid model and second, to determine if the chosen actuator could produce better results if the gear ratio were modified. This manuscript's main contribution to the literature is by showing which joint provides the most regenerative effect during transitions between sitting and standing. MODEL DESIGN AND IMPLEMENTATION: Joint trajectories from existing biomechanics trials of sitting and standing transitions were fed into a 1/10 scale model of a humanoid robot. The robot model, developed in MapleSim, is comprised of standard and off-the-shelf subcomponents, including amplifier, NiMH battery and Robotis Dynamixel RX-28 actuators. RESULTS: Using the RX-28 actuator, the ankle, knee and hip joints all show a degree of regenerative effects, the hip demonstrates the most dramatic levels during the transition from standing to sitting. This contrasts with recent publications which show that the knee has the most important regenerative effects during walking and running. It is also found that for under 3 degree trajectory error the regenerative effect is best for all joints when the gear ratio is increased from the RX-28's 193: 1 value to a value of approximately 760: 1 for the ankle, 630: 1 for the knee and 600: 1 for the hip. CONCLUSIONS: During transitions between sitting and standing the greatest potential for regeneration occurs in the hips. Therefore, systems designed to implement regenerative effects between sitting and standing need to include subsystems at the hip for maximum regenerative effects.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 50 条
  • [1] Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor
    Martinez-Hernandez, Uriel
    Dehghani-Sanij, Abbas A.
    [J]. PATTERN RECOGNITION LETTERS, 2019, 118 : 32 - 41
  • [2] Investigation of sit-to-stand and stand-to-sit in an above knee amputee
    Gao, Fan
    Zhang, Fan
    Huang, He
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7340 - 7343
  • [3] Kinematic characteristics of canine hindlimb movement during sit-to-stand and stand-to-sit motions
    Yoshikawa, Kazuyuki
    Kitazawa, Takio
    Sano, Tadashi
    Ino, Takumi
    Miyasaka, Tomoya
    [J]. RESEARCH IN VETERINARY SCIENCE, 2023, 162
  • [4] ELBOW KINEMATICS DURING SIT-TO-STAND AND STAND-TO-SIT MOVEMENTS
    PACKER, TL
    WYSS, UP
    COSTIGAN, PA
    [J]. CLINICAL BIOMECHANICS, 1993, 8 (06) : 322 - 328
  • [5] Spinopelvic movement strategies during sit-to-stand and stand-to-sit in adult spinal deformity
    Severijns, Pieter
    Overbergh, Thomas
    Desloovere, Kaat
    Moke, Lieven
    Scheys, Lennart
    [J]. GAIT & POSTURE, 2022, 92 : 15 - 23
  • [6] Development of Sit-to-Stand and Stand-to-Sit Training System for Hemiplegic Patients
    Shiraishi, Ryoichiro
    Kawamoto, Hiroaki
    Sankai, Yoshiyuki
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4567 - 4572
  • [7] Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis
    Varol, Huseyin Atakan
    Sup, Frank
    Goldfarb, Michael
    [J]. 2009 IEEE 11TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2009, : 751 - +
  • [8] Rollator usage lets young individuals switch movement strategies in sit-to-stand and stand-to-sit tasks
    Michael Herzog
    Frieder C. Krafft
    Bernd J. Stetter
    Andrea d’Avella
    Lizeth H. Sloot
    Thorsten Stein
    [J]. Scientific Reports, 13
  • [9] Sit-to-Stand and Stand-to-Sit Control Mechanisms of Two-Wheeled Wheelchair
    Ghani, N. M. Abdul
    Tokhi, M. O.
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (04):
  • [10] STRATEGIES FOR POSTURE TRANSFER ADOPTED BY ELDERS DURING SIT-TO-STAND AND STAND-TO-SIT
    Leung, Cherng-Yee
    Chang, Chih-Sheng
    [J]. PERCEPTUAL AND MOTOR SKILLS, 2009, 109 (03) : 695 - 706