Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis

被引:0
|
作者
Varol, Huseyin Atakan [2 ]
Sup, Frank [1 ]
Goldfarb, Michael [1 ]
机构
[1] Vanderbilt Univ, Dept Engn Mech, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
基金
美国国家卫生研究院;
关键词
MOVEMENT;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This work extends the three level powered knee and ankle prosthesis control framework previously developed by the authors by adding sitting mode. A middle level finite state based impedance controller is designed to accommodate sitting, sit-to-stand and stand-to-sit transitions. Moreover, a high level Gaussian Mixture Model based intent recognizer is developed to distinguish between standing and sitting modes and switch the middle level controllers accordingly. Experimental results with unilateral transfemoral amputee subject show that sitting down and standing up intent can be inferred from the prosthesis sensor signals by the intent recognizer. Furthermore, it is demonstrated that the prosthesis generates net active power of 50 W during standing up and dissipates up to 50 W of power during stand-to-sit transition at the knee joint.
引用
收藏
页码:751 / +
页数:3
相关论文
共 50 条
  • [1] Sit-to-Stand and Stand-to-Sit Crutch use for Lower Extremity Powered Exoskeletons
    Daines, Kyle
    Lemaire, Edward D.
    Smith, Andrew
    Herbert-Copley, Andrew
    [J]. 2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), 2017, : 358 - 363
  • [2] Regenerative effects in the Sit-to-Stand and Stand-to-Sit movement
    Wong, Ronnie Joseph
    Smith, James Andrew
    [J]. ROBOTICA, 2015, 33 (01) : 107 - 126
  • [4] Investigation of sit-to-stand and stand-to-sit in an above knee amputee
    Gao, Fan
    Zhang, Fan
    Huang, He
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7340 - 7343
  • [5] Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor
    Martinez-Hernandez, Uriel
    Dehghani-Sanij, Abbas A.
    [J]. PATTERN RECOGNITION LETTERS, 2019, 118 : 32 - 41
  • [6] ELBOW KINEMATICS DURING SIT-TO-STAND AND STAND-TO-SIT MOVEMENTS
    PACKER, TL
    WYSS, UP
    COSTIGAN, PA
    [J]. CLINICAL BIOMECHANICS, 1993, 8 (06) : 322 - 328
  • [7] Development of Sit-to-Stand and Stand-to-Sit Training System for Hemiplegic Patients
    Shiraishi, Ryoichiro
    Kawamoto, Hiroaki
    Sankai, Yoshiyuki
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4567 - 4572
  • [8] Sit-to-Stand and Stand-to-Sit Control Mechanisms of Two-Wheeled Wheelchair
    Ghani, N. M. Abdul
    Tokhi, M. O.
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (04):
  • [9] STRATEGIES FOR POSTURE TRANSFER ADOPTED BY ELDERS DURING SIT-TO-STAND AND STAND-TO-SIT
    Leung, Cherng-Yee
    Chang, Chih-Sheng
    [J]. PERCEPTUAL AND MOTOR SKILLS, 2009, 109 (03) : 695 - 706
  • [10] Time measurement characterization of stand-to-sit and sit-to-stand transitions by using a smartphone
    Hernán A. González Rojas
    Pedro Chaná Cuevas
    Enrique E. Zayas Figueras
    Salvador Cardona Foix
    Antonio J. Sánchez Egea
    [J]. Medical & Biological Engineering & Computing, 2018, 56 : 879 - 888