High-Energy-Density Liquid Spiro-Norbornanes from Methylenenorbornane

被引:13
|
作者
Rudakova, Marina A. [1 ]
Zarezin, Danil P. [1 ]
V. Shorunov, Sergey [1 ]
Samoilov, Vadim O. [1 ]
Ilyin, Sergey O. [1 ]
Maximov, Anton L. [1 ]
V. Bermeshev, Maxim [1 ]
机构
[1] Russian Acad Sci, AV Topchiev Inst Petrochem Synth, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
CHEMICAL-SHIFTS; HYDROCARBONS; ISOMERIZATION; TETRAHYDROTRICYCLOPENTADIENE; REARRANGEMENT; OLEFINS;
D O I
10.1021/acs.energyfuels.2c02220
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We report a synthetic scheme for obtaining new spirohydrocarbons from a versatile norbornane derivative, methylenenorbornane. As a result, four new spiro-hydrocarbons and the isomeric-related norbornanes for the comparison have been obtained in moderate or good yields through [4 pi + 2 pi] and cyclopropanation reactions. The effect of introducing a spiro-center is dependent on the nature of carbocycles at a spiro-carbon atom. There is no obvious advantage in properties for spirocycloalkenes consisting of norbornane and cyclopropane rings at the spiro-carbon atom compared to isomeric hydrocarbons. At the same time, spirocycloalkenes with two norbornane motifs at a spiro-center have exhibited much higher values of densities and energy densities (0.992- 1.023 g/mL, 41.79-43.28 MJ/L) than the related hydrocarbons without a spiro-center and JP-10. The obtained results can provide insight and an opportunity to further expand this work to bring new high-performance jet fuels to market.
引用
收藏
页码:11930 / 11939
页数:10
相关论文
共 50 条
  • [41] Proton imaging of high-energy-density laboratory plasmas
    Schaeffer, Derek B.
    Bott, Archie F. A.
    Borghesi, Marco
    Flippo, Kirk A.
    Fox, William
    Fuchs, Julien
    Li, Chikang
    Seguin, Fredrick H.
    Park, Hye-Sook
    Tzeferacos, Petros
    Willingale, Louise
    REVIEWS OF MODERN PHYSICS, 2023, 95 (04)
  • [42] Toward Practical Demonstration of High-Energy-Density Batteries
    Shearing, Paul R.
    Johnson, Lee R.
    JOULE, 2020, 4 (07) : 1359 - 1361
  • [43] Acoustic stability of nonadiabatic high-energy-density shocks
    Huete, Cesar
    Cobos-Campos, Francisco
    Abdikamalov, Ernazar
    Bouquet, Serge
    PHYSICAL REVIEW FLUIDS, 2020, 5 (11):
  • [44] Thermal Design of High-Energy-Density Wound Components
    Wrobel, Rafal
    Mellor, Phil H.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (09) : 4096 - 4104
  • [45] Research progress in the synthesis of high-energy-density fuels
    Xiong, Lifu
    Wu, Chenghang
    Li, Mengshu
    Shen, Boxiong
    FUEL PROCESSING TECHNOLOGY, 2025, 271
  • [46] High-Energy-Density Physics at the National Ignition Facility
    Hurricane, O. A.
    Herrmann, M. C.
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 67, 2017, 67 : 213 - 230
  • [47] High-energy-density metal nitrides with armchair chains
    Jianan Yuan
    Kang Xia
    Chi Ding
    Xiaomeng Wang
    Qing Lu
    Jian Sun
    Matter and Radiation at Extremes, 2022, (03) : 47 - 53
  • [48] High-Energy-Density Waterborne Dielectrics from Polyelectrolyte-Colloid Complexes
    Che, Junjin
    Zakri, Cecile
    Ly, Isabelle
    Neri, Wilfrid
    Laurichesse, Eric
    Chapel, Jean-Paul
    Poulin, Philippe
    Yuan, Jinkai
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (26)
  • [49] Accelerating the Design of High-Energy-Density Hydrocarbon Fuels by Learning from the Data
    Wen, Linyuan
    Shan, Shiqun
    Lai, Weipeng
    Shi, Jinwen
    Li, Mingtao
    Liu, Yingzhe
    Liu, Maochang
    Zhou, Zhaohui
    MOLECULES, 2023, 28 (21):