High-Energy-Density Liquid Spiro-Norbornanes from Methylenenorbornane

被引:13
|
作者
Rudakova, Marina A. [1 ]
Zarezin, Danil P. [1 ]
V. Shorunov, Sergey [1 ]
Samoilov, Vadim O. [1 ]
Ilyin, Sergey O. [1 ]
Maximov, Anton L. [1 ]
V. Bermeshev, Maxim [1 ]
机构
[1] Russian Acad Sci, AV Topchiev Inst Petrochem Synth, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
CHEMICAL-SHIFTS; HYDROCARBONS; ISOMERIZATION; TETRAHYDROTRICYCLOPENTADIENE; REARRANGEMENT; OLEFINS;
D O I
10.1021/acs.energyfuels.2c02220
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We report a synthetic scheme for obtaining new spirohydrocarbons from a versatile norbornane derivative, methylenenorbornane. As a result, four new spiro-hydrocarbons and the isomeric-related norbornanes for the comparison have been obtained in moderate or good yields through [4 pi + 2 pi] and cyclopropanation reactions. The effect of introducing a spiro-center is dependent on the nature of carbocycles at a spiro-carbon atom. There is no obvious advantage in properties for spirocycloalkenes consisting of norbornane and cyclopropane rings at the spiro-carbon atom compared to isomeric hydrocarbons. At the same time, spirocycloalkenes with two norbornane motifs at a spiro-center have exhibited much higher values of densities and energy densities (0.992- 1.023 g/mL, 41.79-43.28 MJ/L) than the related hydrocarbons without a spiro-center and JP-10. The obtained results can provide insight and an opportunity to further expand this work to bring new high-performance jet fuels to market.
引用
收藏
页码:11930 / 11939
页数:10
相关论文
共 50 条
  • [21] Ionic transport in high-energy-density matter
    Stanton, Liam G.
    Murillo, Michael S.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [22] High-Energy-Density Physics and Laser Technologies
    Anisimov, S. I.
    Zhakhovsky, V. V.
    Inogamov, N. A.
    Migdal, K. P.
    Petrov, Yu. V.
    Khokhlov, V. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2019, 129 (04) : 757 - 782
  • [23] Confined detection of high-energy-density materials
    Majano, Gerardo
    Mintova, Svetlana
    Bein, Thomas
    Klapoetke, Thomas M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (18): : 6694 - 6699
  • [24] Approaches to turbulence in high-energy-density experiments
    Drake, R. Paul
    Harding, Eric C.
    Kuranz, Carolyn C.
    PHYSICA SCRIPTA, 2008, T132
  • [25] Detonatability of high-energy-density heterocyclic compounds
    A. A. Kotomin
    A. S. Kozlov
    S. A. Dushenok
    Russian Journal of Physical Chemistry B, 2007, 1 : 573 - 575
  • [26] Boron nanocrystals as high-energy-density fuels
    Zhou, Shu
    Nozaki, Tomohiro
    Pi, Xiaodong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (02)
  • [27] High-Energy-Density Physics and Laser Technologies
    S. I. Anisimov
    V. V. Zhakhovsky
    N. A. Inogamov
    K. P. Migdal
    Yu. V. Petrov
    V. A. Khokhlov
    Journal of Experimental and Theoretical Physics, 2019, 129 : 757 - 782
  • [28] Detonatability of high-energy-density heterocyclic compounds
    Kotomin, A. A.
    Kozlov, A. S.
    Dushenok, S. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 1 (06) : 573 - 575
  • [29] High-energy-density extended CO solid
    Lipp, MJ
    Evans, WJ
    Baer, BJ
    Yoo, CS
    NATURE MATERIALS, 2005, 4 (03) : 211 - 215
  • [30] High-energy-density extended CO solid
    Magnus J. Lipp
    William J. Evans
    Bruce J. Baer
    Choong-Shik Yoo
    Nature Materials, 2005, 4 : 211 - 215