K-theoretic Chern class formulas for vexillary degeneracy loci

被引:17
|
作者
Anderson, David [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Degeneracy locus; K-theory; Giambelli formula; Schubert variety; SCHUBERT POLYNOMIALS; GIAMBELLI; COHOMOLOGY;
D O I
10.1016/j.aim.2019.04.049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using raising operators and geometric arguments, we establish formulas for the K-theory classes of degeneracy loci in classical types. We also find new determinantal and Pfaffian expressions for classical cases considered by Giambelli: the loci where a generic matrix drops rank, and where a generic symmetric or skew-symmetric matrix drops rank. In an appendix, we construct a K-theoretic Euler class for even-rank vector bundles with quadratic form, refining the Chow-theoretic class introduced by Edidin and Graham. We also establish a relation between top Chern classes of maximal isotropic subbundles, which is used in proving the type D degeneracy locus formulas. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 485
页数:46
相关论文
共 50 条
  • [41] On the K-theoretic classification of dynamically stable systems
    De Nittis, Giuseppe
    Gomi, Kiyonori
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (01)
  • [42] A K-theoretic interpretation of real Deligne cohomology
    Pridham, J. P.
    ADVANCES IN MATHEMATICS, 2017, 320 : 795 - 826
  • [43] K-THEORETIC AMENABILITY FOR GROUPS ACTING ON TREES
    JULG, P
    VALETTE, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (23): : 977 - 980
  • [44] K-theoretic duality for hyperbolic dynamical systems
    Kaminker, Jerome
    Putnam, Ian F.
    Whittaker, Michael F.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 730 : 263 - 299
  • [45] K-theoretic exceptional collections at roots of unity
    Polishchuk, A.
    JOURNAL OF K-THEORY, 2011, 7 (01) : 169 - 201
  • [46] K-theoretic rigidity and slow dimension growth
    Andrew Toms
    Inventiones mathematicae, 2011, 183 : 225 - 244
  • [47] K-Theoretic Duality for Shifts of Finite Type
    Jerome Kaminker
    Ian Putnam
    Communications in Mathematical Physics, 1997, 187 : 509 - 522
  • [48] On the K-Theoretic Classification of Topological Phases of Matter
    Thiang, Guo Chuan
    ANNALES HENRI POINCARE, 2016, 17 (04): : 757 - 794
  • [49] Twisted K-theoretic Gromov–Witten invariants
    Valentin Tonita
    Mathematische Annalen, 2018, 372 : 489 - 526
  • [50] Chern class formulas for quiver varieties
    Buch, AS
    Fulton, W
    INVENTIONES MATHEMATICAE, 1999, 135 (03) : 665 - 687