K-theoretic Chern class formulas for vexillary degeneracy loci

被引:17
|
作者
Anderson, David [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Degeneracy locus; K-theory; Giambelli formula; Schubert variety; SCHUBERT POLYNOMIALS; GIAMBELLI; COHOMOLOGY;
D O I
10.1016/j.aim.2019.04.049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using raising operators and geometric arguments, we establish formulas for the K-theory classes of degeneracy loci in classical types. We also find new determinantal and Pfaffian expressions for classical cases considered by Giambelli: the loci where a generic matrix drops rank, and where a generic symmetric or skew-symmetric matrix drops rank. In an appendix, we construct a K-theoretic Euler class for even-rank vector bundles with quadratic form, refining the Chow-theoretic class introduced by Edidin and Graham. We also establish a relation between top Chern classes of maximal isotropic subbundles, which is used in proving the type D degeneracy locus formulas. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 485
页数:46
相关论文
共 50 条