K-theoretic duality for hyperbolic dynamical systems

被引:18
|
作者
Kaminker, Jerome [1 ,2 ]
Putnam, Ian F. [3 ]
Whittaker, Michael F. [4 ]
机构
[1] IUPUI, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
C-ASTERISK-ALGEBRAS; TOPOLOGICAL MARKOV-CHAINS; NOVIKOV-CONJECTURE; BOUNDARY ACTIONS; STAR-ALGEBRAS; DIFFEOMORPHISMS; FUNCTOR;
D O I
10.1515/crelle-2014-0126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The K-theoretic analog of Spanier-Whitehead duality for noncommutative C*-algebras is shown to hold for the Ruelle algebras associated to irreducible Smale spaces. This had previously been proved only for shifts of finite type. Implications of this result as well as relations to the Baum-Connes conjecture and other topics are also considered.
引用
收藏
页码:263 / 299
页数:37
相关论文
共 50 条
  • [1] A K-THEORETIC INVARIANT FOR DYNAMICAL-SYSTEMS
    POON, YT
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) : 515 - 533
  • [2] K-theoretic duality for shifts of finite type
    Kaminker, J
    Putnam, I
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (03) : 509 - 522
  • [3] Localization C*-algebras and K-theoretic duality
    Dadarlat, Marius
    Willett, Rufus
    Wu, Jianchao
    ANNALS OF K-THEORY, 2018, 3 (04) : 615 - 630
  • [4] K-Theoretic Duality for Shifts of Finite Type
    Jerome Kaminker
    Ian Putnam
    Communications in Mathematical Physics, 1997, 187 : 509 - 522
  • [5] The K-theoretic Farrell–Jones conjecture for hyperbolic groups
    Arthur Bartels
    Wolfgang Lück
    Holger Reich
    Inventiones mathematicae, 2008, 172 : 29 - 70
  • [6] K-theoretic Tate–Poitou duality and the fiber of the cyclotomic trace
    Andrew J. Blumberg
    Michael A. Mandell
    Inventiones mathematicae, 2020, 221 : 397 - 419
  • [7] K-theoretic duality for extensions of Cuntz-Krieger algebras
    Matsumoto, Kengo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [8] qKZ/tRS duality via quantum K-theoretic counts
    Koroteev, Peter
    Zeitlin, Anton M.
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (02) : 435 - 470
  • [9] The K-theoretic Farrell-Jones conjecture for hyperbolic groups
    Bartels, Arthur
    Lueck, Wolfgang
    Reich, Holger
    INVENTIONES MATHEMATICAE, 2008, 172 (01) : 29 - 70
  • [10] K-theoretic Tate-Poitou duality and the fiber of the cyclotomic trace
    Blumberg, Andrew J.
    Mandell, Michael A.
    INVENTIONES MATHEMATICAE, 2020, 221 (02) : 397 - 419