Ten simple rules for predictive modeling of individual differences in neuroimaging

被引:217
|
作者
Scheinost, Dustin [1 ,2 ,3 ,4 ]
Noble, Stephanie [4 ]
Horien, Corey [4 ]
Greene, Abigail S. [4 ]
Lake, Evelyn M. R. [1 ]
Salehi, Mehraveh [5 ]
Gao, Siyuan [6 ]
Shen, Xilin [1 ]
O'Connor, David [6 ]
Barron, Daniel S. [7 ]
Yip, Sarah W. [3 ,7 ]
Rosenberg, Monica D. [8 ]
Constable, R. Todd [1 ,4 ,9 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[2] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
[3] Yale Sch Med, Ctr Child Study, New Haven, CT USA
[4] Yale Sch Med, Interdept Neurosci Program, New Haven, CT USA
[5] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[6] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[7] Yale Sch Med, Dept Psychiat, New Haven, CT USA
[8] Yale Univ, Dept Psychol, New Haven, CT 06520 USA
[9] Yale Sch Med, Dept Neurosurg, New Haven, CT USA
关键词
Machine learning; Connectome; Classification; Cross-validation; Neural networks; RESTING-STATE DATA; FUNCTIONAL CONNECTIVITY; CROSS-VALIDATION; BRAIN; FMRI; AGE; CLASSIFICATION; ACCURACY; PAIN; DISRUPTION;
D O I
10.1016/j.neuroimage.2019.02.057
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Establishing brain-behavior associations that map brain organization to phenotypic measures and generalize to novel individuals remains a challenge in neuroimaging. Predictive modeling approaches that define and validate models with independent datasets offer a solution to this problem. While these methods can detect novel and generalizable brain-behavior associations, they can be daunting, which has limited their use by the wider connectivity community. Here, we offer practical advice and examples based on functional magnetic resonance imaging (fMRI) functional connectivity data for implementing these approaches. We hope these ten rules will increase the use of predictive models with neuroimaging data.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [1] Ten simple rules for neuroimaging meta-analysis
    Mueller, Veronika I.
    Cieslik, Edna C.
    Laird, Angela R.
    Fox, Peter T.
    Radua, Joaquim
    Mataix-Cols, David
    Tench, Christopher R.
    Yarkoni, Tal
    Nichols, Thomas E.
    Turkeltaub, Peter E.
    Wager, Tor D.
    Eickhoff, Simon B.
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2018, 84 : 151 - 161
  • [2] Ten simple rules for dynamic causal modeling
    Stephan, K. E.
    Penny, W. D.
    Moran, R. J.
    den Ouden, H. E. M.
    Daunizeau, J.
    Friston, K. J.
    [J]. NEUROIMAGE, 2010, 49 (04) : 3099 - 3109
  • [3] Ten simple rules for the computational modeling of behavioral data
    Wilson, Robert C.
    Collins, Anne G. E.
    [J]. ELIFE, 2019, 8
  • [4] Neuroimaging of individual differences: A latent variable modeling perspective
    Cooper, Shelly R.
    Jackson, Joshua J.
    Barch, Deanna M.
    Braver, Todd S.
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2019, 98 : 29 - 46
  • [5] Ten Simple Rules for Writing a PLOS Ten Simple Rules Article
    Dashnow, Harriet
    Lonsdale, Andrew
    Bourne, Philip E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (10)
  • [6] Ten simple rules for reviewers
    Bourne, Philip E.
    Korngreen, Alon
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (09) : 973 - 974
  • [7] Ten rules for effective modeling
    Robinson, P. A.
    [J]. NEUROIMAGE, 2022, 263
  • [8] Ten Simple Rules for Better Figures
    Rougier, Nicolas P.
    Droettboom, Michael
    Bourne, Philip E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (09)
  • [9] Ten simple rules for structuring papers
    Mensh, Brett
    Kording, Konrad
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (09)
  • [10] Ten Simple Rules for Developing a MOOC
    Manallack, David T.
    Yuriev, Elizabeth
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (10)