Ten simple rules for predictive modeling of individual differences in neuroimaging

被引:217
|
作者
Scheinost, Dustin [1 ,2 ,3 ,4 ]
Noble, Stephanie [4 ]
Horien, Corey [4 ]
Greene, Abigail S. [4 ]
Lake, Evelyn M. R. [1 ]
Salehi, Mehraveh [5 ]
Gao, Siyuan [6 ]
Shen, Xilin [1 ]
O'Connor, David [6 ]
Barron, Daniel S. [7 ]
Yip, Sarah W. [3 ,7 ]
Rosenberg, Monica D. [8 ]
Constable, R. Todd [1 ,4 ,9 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[2] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
[3] Yale Sch Med, Ctr Child Study, New Haven, CT USA
[4] Yale Sch Med, Interdept Neurosci Program, New Haven, CT USA
[5] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[6] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[7] Yale Sch Med, Dept Psychiat, New Haven, CT USA
[8] Yale Univ, Dept Psychol, New Haven, CT 06520 USA
[9] Yale Sch Med, Dept Neurosurg, New Haven, CT USA
关键词
Machine learning; Connectome; Classification; Cross-validation; Neural networks; RESTING-STATE DATA; FUNCTIONAL CONNECTIVITY; CROSS-VALIDATION; BRAIN; FMRI; AGE; CLASSIFICATION; ACCURACY; PAIN; DISRUPTION;
D O I
10.1016/j.neuroimage.2019.02.057
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Establishing brain-behavior associations that map brain organization to phenotypic measures and generalize to novel individuals remains a challenge in neuroimaging. Predictive modeling approaches that define and validate models with independent datasets offer a solution to this problem. While these methods can detect novel and generalizable brain-behavior associations, they can be daunting, which has limited their use by the wider connectivity community. Here, we offer practical advice and examples based on functional magnetic resonance imaging (fMRI) functional connectivity data for implementing these approaches. We hope these ten rules will increase the use of predictive models with neuroimaging data.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [31] Ten Simple Rules for Writing a Literature Review
    Pautasso, Marco
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (07)
  • [32] Ten simple rules for documenting scientific software
    Lee, Benjamin D.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
  • [33] Ten simple rules when considering retirement
    Bourne, Philip E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (10)
  • [34] Ten simple rules for effective presentation slides
    Naegle, Kristen M.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (12)
  • [35] Ten Simple Rules for Effective Computational Research
    Osborne, James M.
    Bernabeu, Miguel O.
    Bruna, Maria
    Calderhead, Ben
    Cooper, Jonathan
    Dalchau, Neil
    Dunn, Sara-Jane
    Fletcher, Alexander G.
    Freeman, Robin
    Groen, Derek
    Knapp, Bernhard
    McInerny, Greg J.
    Mirams, Gary R.
    Pitt-Francis, Joe
    Sengupta, Biswa
    Wright, David W.
    Yates, Christian A.
    Gavaghan, David J.
    Emmott, Stephen
    Deane, Charlotte
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (03)
  • [36] Ten Simple Rules for Finishing Your PhD
    Marino, Jacopo
    Stefan, Melanie I.
    Blackford, Sarah
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (12)
  • [37] Ten simple rules for doing a postdoc in pharma
    Zhang, Jitao David
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (06)
  • [38] Ten simple rules for productive lab meetings
    Golden, Nigel
    Devarajan, Kadambari
    Balantic, Cathleen
    Drake, Joseph
    Hallworth, Michael T.
    Morelli, Toni Lyn
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
  • [39] Ten simple rules for writing a Registered Report
    Henderson, Emma L.
    Chambers, Christopher D.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [40] Ten simple rules for building an antiracist lab
    Chaudhary, V. Bala
    Berhe, Asmeret Asefaw
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (10)