Ten simple rules for dynamic causal modeling

被引:596
|
作者
Stephan, K. E. [1 ,2 ]
Penny, W. D. [2 ]
Moran, R. J. [2 ]
den Ouden, H. E. M. [3 ]
Daunizeau, J. [1 ,2 ]
Friston, K. J. [2 ]
机构
[1] Univ Zurich, Inst Empir Res Econ, Lab Social & Neural Syst Res, CH-8006 Zurich, Switzerland
[2] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[3] Ctr Cognit Neuroimaging, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands
基金
英国惠康基金;
关键词
Effective connectivity; DCM; Bayesian model selection; BMS; Model evidence; Model comparison; Bayes factor; Nonlinear dynamics; fMRI; EEG; MEG; Synaptic plasticity; EFFECTIVE CONNECTIVITY; SYNAPTIC PLASTICITY; STRUCTURAL EQUATION; SPECTRAL RESPONSES; EVOKED-RESPONSES; LANGUAGE NETWORK; DECISION-MAKING; TELL US; FMRI; CORTEX;
D O I
10.1016/j.neuroimage.2009.11.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3099 / 3109
页数:11
相关论文
共 50 条
  • [1] Ten simple rules for the computational modeling of behavioral data
    Wilson, Robert C.
    Collins, Anne G. E.
    [J]. ELIFE, 2019, 8
  • [2] Ten Simple Rules for Writing a PLOS Ten Simple Rules Article
    Dashnow, Harriet
    Lonsdale, Andrew
    Bourne, Philip E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (10)
  • [3] Ten simple rules for predictive modeling of individual differences in neuroimaging
    Scheinost, Dustin
    Noble, Stephanie
    Horien, Corey
    Greene, Abigail S.
    Lake, Evelyn M. R.
    Salehi, Mehraveh
    Gao, Siyuan
    Shen, Xilin
    O'Connor, David
    Barron, Daniel S.
    Yip, Sarah W.
    Rosenberg, Monica D.
    Constable, R. Todd
    [J]. NEUROIMAGE, 2019, 193 : 35 - 45
  • [4] Ten simple rules for reviewers
    Bourne, Philip E.
    Korngreen, Alon
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (09) : 973 - 974
  • [5] Ten rules for effective modeling
    Robinson, P. A.
    [J]. NEUROIMAGE, 2022, 263
  • [6] Ten Simple Rules for Better Figures
    Rougier, Nicolas P.
    Droettboom, Michael
    Bourne, Philip E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (09)
  • [7] Ten simple rules for structuring papers
    Mensh, Brett
    Kording, Konrad
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (09)
  • [8] Ten Simple Rules for Developing a MOOC
    Manallack, David T.
    Yuriev, Elizabeth
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (10)
  • [9] Ten Simple Rules for Starting a Company
    Fletcher, Anthony C.
    Bourne, Philip E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (03)
  • [10] Ten simple rules for unbiased teaching
    Mobbs, Dean
    Tashjian, Sarah M.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)