Fractional Ostrowski Type Inequalities for Interval Valued Functions

被引:8
|
作者
Budak, Huseyin [1 ]
Kashuri, Artion [2 ]
Butt, Saad Ihsan [3 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Univ Ismail Qemali, Fac Tech & Nat Sci, Dept Math, Vlora 9400, Albania
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
关键词
Ostrowski inequality; generalized Hukuhara difference; interval valued functions; fractional integrals;
D O I
10.2298/FIL2208531B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some generalization of Ostrowski type inequalities for interval valued functions by using the definitions of the gH-derivatives. At the end, a briefly conclusion is given as well.
引用
收藏
页码:2531 / 2540
页数:10
相关论文
共 50 条
  • [21] Chebyshev type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    [J]. FUZZY SETS AND SYSTEMS, 2020, 396 (396) : 82 - 101
  • [22] Multivariate fractional Ostrowski type inequalities
    Anastassiou, George A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (03) : 434 - 447
  • [23] Some fractional Hermite-Hadamard-type inequalities for interval-valued coordinated functions
    Shi, Fangfang
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [24] Some fractional Hermite–Hadamard-type inequalities for interval-valued coordinated functions
    Fangfang Shi
    Guoju Ye
    Dafang Zhao
    Wei Liu
    [J]. Advances in Difference Equations, 2021
  • [25] FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE MIXED DERIVATIVES ARE PREQUASIINVEX AND α-PREQUASIINVEX FUNCTIONS
    Meftah, Badreddine
    Merad, Meriem
    Souahi, Abdourazek
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) : 92 - 107
  • [26] Ostrowski and Landau inequalities for Banach space valued functions
    Anastassiou, George A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 312 - 329
  • [27] Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Treanta, Savin
    Santos-Garcia, Gustavo
    Macias-Diaz, Jorge E.
    Soliman, Mohamed S.
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [28] OSTROWSKI TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Kavurmaci, Havva
    Avci, Merve
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (04): : 335 - 340
  • [29] On Ostrowski-Mercer's Type Fractional Inequalities for Convex Functions and Applications
    Sahoo, Soubhagya Kumar
    Kashuri, Artion
    Aljuaid, Munirah
    Mishra, Soumyarani
    De La Sen, Manuel
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [30] FRACTIONAL MULTIPLICATIVE OSTROWSKI-TYPE INEQUALITIES FOR MULTIPLICATIVE DIFFERENTIABLE CONVEX FUNCTIONS
    Meftah, Badreddine
    Boulares, Hamid
    Khan, Aziz
    Abdeljawad, Thabet
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 17 (01): : 113 - 128