Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities

被引:13
|
作者
Khan, Muhammad Bilal [1 ]
Zaini, Hatim Ghazi [2 ]
Treanta, Savin [3 ]
Santos-Garcia, Gustavo [4 ,5 ,6 ]
Macias-Diaz, Jorge E. [7 ,8 ]
Soliman, Mohamed S. [9 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[2] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, POB 11099, At Taif 21944, Saudi Arabia
[3] Univ Politehn Bucuresti, Dept Appl Math, Bucharest 060042, Romania
[4] Univ Salamanca, Multidisciplinary Inst Enterprise IME, Salamanca 37007, Spain
[5] Univ Salamanca, Fac Econ & Empresa, Salamanca 37007, Spain
[6] Univ Salamanca, Multidisciplinary Inst Enterprise IME, Salamanca 37007, Spain
[7] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Ciudad Univ,Ave Univ 940, Aguascalientes 20131, Mexico
[8] Tallinn Univ, Sch Digital Technol, Dept Math, Narva Rd 25, EE-10120 Tallinn, Estonia
[9] Taif Univ, Coll Engn, Dept Elect Engn, POB 11099, At Taif 21944, Saudi Arabia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 02期
关键词
left and right convex interval-valued function; fractional integral operator; Hermite-Hadamard type inequality; Hermite-Hadamard Fejer type inequality; HERMITE-HADAMARD-TYPE; INTEGRAL-INEQUALITIES;
D O I
10.3390/sym14020341
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss the Riemann-Liouville fractional integral operator for left and right convex interval-valued functions (left and right convex I center dot V-F), as well as various related notions and concepts. First, the authors used the Riemann-Liouville fractional integral to prove Hermite-Hadamard type inequality. Furthermore, type inequalities for the product of two left and right convex I center dot V-Fs have been established. Finally, for left and right convex I center dot V-Fs, we found the Riemann-Liouville fractional integral Hermite-Hadamard type inequality (Fejer type inequality). The findings of this research show that this methodology may be applied directly and is computationally simple and precise.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings
    Khan, Muhammad Bilal
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohammed S.
    Zaini, Hatim Ghazi
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [2] Fractional calculus for interval-valued functions
    Lupulescu, Vasile
    [J]. FUZZY SETS AND SYSTEMS, 2015, 265 : 63 - 85
  • [3] Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus
    Macias-Diaz, Jorge E.
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Mousa, Abd Allah A.
    Alghamdi, Safar M.
    [J]. AIMS MATHEMATICS, 2022, 7 (03): : 4266 - 4292
  • [4] Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. AIMS MATHEMATICS, 2022, 7 (06): : 10454 - 10482
  • [5] Fractional calculus of interval-valued functions on time scales
    Ma, Weiyuan
    Li, Xin
    [J]. CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1827 - 1840
  • [6] New class of convex interval-valued functions and Riemann Lionville fractional integral inequalities
    Khan, Muhammad Bilal
    Alsalami, Omar Mutab
    Trean, Savin
    Saeed, Tareq
    Nonlaopon, Kamsing
    [J]. AIMS MATHEMATICS, 2022, 7 (08): : 15497 - 15519
  • [7] On the Hermite–Hadamard inequalities for interval-valued coordinated convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Ghulam Murtaza
    Zhiyue Zhang
    [J]. Advances in Difference Equations, 2020
  • [8] Fractional Hermite–Hadamard type inequalities for interval-valued functions
    Xuelong Liu
    Gouju Ye
    Dafang Zhao
    Wei Liu
    [J]. Journal of Inequalities and Applications, 2019
  • [9] On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions
    Zhao, Dafang
    Ali, Muhammad Aamir
    Murtaza, Ghulam
    Zhang, Zhiyue
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions
    Khan, Muhammad Bilal
    Mohammed, Pshtiwan Othman
    Noor, Muhammad Aslam
    Abualnaja, Khadijah M.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6552 - 6580