Fractional Ostrowski Type Inequalities for Interval Valued Functions

被引:8
|
作者
Budak, Huseyin [1 ]
Kashuri, Artion [2 ]
Butt, Saad Ihsan [3 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Univ Ismail Qemali, Fac Tech & Nat Sci, Dept Math, Vlora 9400, Albania
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
关键词
Ostrowski inequality; generalized Hukuhara difference; interval valued functions; fractional integrals;
D O I
10.2298/FIL2208531B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some generalization of Ostrowski type inequalities for interval valued functions by using the definitions of the gH-derivatives. At the end, a briefly conclusion is given as well.
引用
收藏
页码:2531 / 2540
页数:10
相关论文
共 50 条
  • [1] Ostrowski and Cebysev type inequalities for interval-valued functions and applications
    Guo, Jing
    Zhu, Xianjun
    Li, Wenfeng
    Li, Hui
    [J]. PLOS ONE, 2023, 18 (09):
  • [2] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Chalco-Cano, Y.
    Lodwick, W. A.
    Condori-Equice, W.
    [J]. SOFT COMPUTING, 2015, 19 (11) : 3293 - 3300
  • [3] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Y. Chalco-Cano
    W. A. Lodwick
    W. Condori-Equice
    [J]. Soft Computing, 2015, 19 : 3293 - 3300
  • [4] Fractional Ostrowski type inequalities for bounded functions
    Erden, Samet
    Budak, Huseyin
    Zeki Sarikaya, Mehmet
    Iftikhar, Sabah
    Kumam, Poom
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [5] Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative
    Chalco-Cano, Y.
    Flores-Franulic, A.
    Roman-Flores, H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 457 - 472
  • [6] Fractional Ostrowski type inequalities for bounded functions
    Samet Erden
    Hüseyin Budak
    Mehmet Zeki Sarikaya
    Sabah Iftikhar
    Poom Kumam
    [J]. Journal of Inequalities and Applications, 2020
  • [7] An Ostrowski type inequality for interval-valued functions
    Flores-Franulic, Arturo
    Chalco-Cano, Yurilev
    Roman-Flores, Heriberto
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1459 - 1462
  • [8] Fractional Hermite–Hadamard type inequalities for interval-valued functions
    Xuelong Liu
    Gouju Ye
    Dafang Zhao
    Wei Liu
    [J]. Journal of Inequalities and Applications, 2019
  • [9] A generalization of Ostrowski type inequalities for fuzzy-valued functions
    Flores-Franulic, A.
    Aguirre-Cipe, I.
    Chalco-Cano, Y.
    Roman-Flores, H.
    [J]. 2015 Annual Meeting of the North American Fuzzy Information Processing Society DigiPen NAFIPS 2015, 2015,
  • [10] Fractional Hermite-Hadamard type inequalities for interval-valued functions
    Liu, Xuelong
    Ye, Gouju
    Zhao, Dafang
    Liu, Wei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)