Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method

被引:31
|
作者
Mayer, AS [1 ]
Huang, CL [1 ]
机构
[1] Michigan Technol Univ, Dept Geol Engn & Sci, Houghton, MI 49931 USA
关键词
parameter inversion; maximum likelihood estimation; groundwater flow; transport;
D O I
10.1016/S0309-1708(98)00049-9
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:841 / 853
页数:13
相关论文
共 50 条
  • [1] Optimization method of maximum likelihood estimation parameter estimation based on genetic algorithms
    School of Marine Engineering, Northwestern Polytechnical University, Xi'an 710072, China
    J. Mech. Strength, 2006, 1 (79-82):
  • [2] A multivariate maximum likelihood method for modal parameter estimation
    Lardies, J
    Larbi, N
    STRUCTURAL DYNAMICS, VOLS 1 AND 2, 1999, : 163 - 168
  • [3] Joint Estimation of State and Parameter with Maximum Likelihood Method
    Zhuang, Huiping
    Lu, Jieying
    Li, Junhui
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5276 - 5281
  • [4] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [5] The application of the "Method of Maximum Likelihood" to the estimation of linkage
    Hutchinson, JB
    GENETICS, 1929, 14 (06) : 519 - 537
  • [6] Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion
    Wu, Dalei
    NEURAL COMPUTATION, 2009, 21 (06) : 1776 - 1795
  • [7] Optimal tuning parameter estimation in maximum penalized likelihood method
    Ueki, Masao
    Fueda, Kaoru
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (03) : 413 - 438
  • [8] Optimal tuning parameter estimation in maximum penalized likelihood method
    Masao Ueki
    Kaoru Fueda
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 413 - 438
  • [9] A maximum likelihood approximation method for Dirichlet's parameter estimation
    Wicker, Nicolas
    Muller, Jean
    Kalathur, Ravi Kiran Reddy
    Poch, Olivier
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1315 - 1322
  • [10] Parameter estimation of systems described by the relation by maximum likelihood method
    Swiatek, Jerzy
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 1217 - 1222