Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method

被引:31
|
作者
Mayer, AS [1 ]
Huang, CL [1 ]
机构
[1] Michigan Technol Univ, Dept Geol Engn & Sci, Houghton, MI 49931 USA
关键词
parameter inversion; maximum likelihood estimation; groundwater flow; transport;
D O I
10.1016/S0309-1708(98)00049-9
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:841 / 853
页数:13
相关论文
共 50 条
  • [11] Spectral Parameter Estimation by an Iterative Quadratic Maximum Likelihood Method
    Department of Biochemistry, Hong Kong Univ. of Sci. and Technol., Clear Water Bay, Kowloon, Hong Kong
    不详
    J. Magn. Reson., 1 (37-43):
  • [12] Parameter estimation of systems described by the relation by maximum likelihood method
    Swiatek, Jerzy
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 1217 - 1222
  • [13] Estimation of the 4-Parameter Model with Marginal Maximum Likelihood
    Feuerstahler, Leah M.
    Waller, Niels G.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2014, 49 (03) : 285 - 285
  • [14] Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model
    Rosenblum, Michael
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [15] MAXIMUM LIKELIHOOD SCALE PARAMETER ESTIMATION: AN APPLICATION TO GAIN ESTIMATION FOR QAM CONSTELLATIONS
    Colonnese, Stefania
    Rinauro, Stefano
    Scarano, Gaetano
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1582 - 1586
  • [16] Numerical Issues in Maximum Likelihood Parameter Estimation for Gaussian Process Interpolation
    Basak, Subhasish
    Petit, Sebastien
    Bect, Julien
    Vazquez, Emmanuel
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 116 - 131
  • [17] Maximum likelihood parameter estimation of textures using a wold-decomposition based model
    Francos, Joseph M.
    Narasimhan, Anand
    Woods, John W.
    IEEE Transactions on Image Processing, 1995, 4 (12): : 1655 - 1666
  • [18] Maximum-likelihood based estimation of the Nakagami m parameter
    Cheng, JL
    Beaulieu, NC
    IEEE COMMUNICATIONS LETTERS, 2001, 5 (03) : 101 - 103
  • [19] A parameter estimation approach based on binary measurements using Maximum Likelihood analysis - Application to MEMS
    Jafari, Kian
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (02) : 716 - 721
  • [20] A parameter estimation approach based on binary measurements using Maximum Likelihood analysis - Application to MEMS
    Kian Jafari
    International Journal of Control, Automation and Systems, 2017, 15 : 716 - 721