A maximum likelihood approximation method for Dirichlet's parameter estimation

被引:32
|
作者
Wicker, Nicolas [1 ]
Muller, Jean [1 ,2 ]
Kalathur, Ravi Kiran Reddy [1 ]
Poch, Olivier [1 ]
机构
[1] ULP, INSERM, CNRS, Lab Bioinformat & Genom Integrat,Inst Genet & Bio, F-67404 Illkirch Graffenstaden, France
[2] European Mol Biol Lab, Computat Biol Unit, D-69117 Heidelberg, Germany
关键词
Dirichlet distribution; maximum likelihood; parameter estimation; proteins clustering;
D O I
10.1016/j.csda.2007.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dirichlet distributions are natural choices to analyse data described by frequencies or proportions since they are the simplest known distributions for such data apart from the uniform distribution. They are often used whenever proportions are involved, for example, in text-mining, image analysis, biology or as a prior of a multinomial distribution in Bayesian statistics. As the Dirichlet distribution belongs to the exponential family, its parameters can be easily inferred by maximum likelihood. Parameter estimation is usually performed with the Newton-Raphson algorithm after an initialisation step using either the moments or Ronning's methods. However this initialisation can result in parameters that lie outside the admissible region. A simple and very efficient alternative based on a maximum likelihood approximation is presented. The advantages of the presented method compared to two other methods are demonstrated on synthetic data sets as well as for a practical biological problem: the clustering of protein sequences based on their amino acid compositions. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:1315 / 1322
页数:8
相关论文
共 50 条
  • [1] A multivariate maximum likelihood method for modal parameter estimation
    Lardies, J
    Larbi, N
    STRUCTURAL DYNAMICS, VOLS 1 AND 2, 1999, : 163 - 168
  • [2] Joint Estimation of State and Parameter with Maximum Likelihood Method
    Zhuang, Huiping
    Lu, Jieying
    Li, Junhui
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5276 - 5281
  • [3] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [4] Optimal tuning parameter estimation in maximum penalized likelihood method
    Ueki, Masao
    Fueda, Kaoru
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (03) : 413 - 438
  • [5] Optimal tuning parameter estimation in maximum penalized likelihood method
    Masao Ueki
    Kaoru Fueda
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 413 - 438
  • [6] Spectral parameter estimation by an iterative quadratic maximum likelihood method
    Zhu, G
    Choy, WY
    Sanctuary, BC
    JOURNAL OF MAGNETIC RESONANCE, 1998, 135 (01) : 37 - 43
  • [7] Spectral Parameter Estimation by an Iterative Quadratic Maximum Likelihood Method
    Department of Biochemistry, Hong Kong Univ. of Sci. and Technol., Clear Water Bay, Kowloon, Hong Kong
    不详
    J. Magn. Reson., 1 (37-43):
  • [8] Parameter estimation of systems described by the relation by maximum likelihood method
    Swiatek, Jerzy
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 1217 - 1222
  • [9] Optimization method of maximum likelihood estimation parameter estimation based on genetic algorithms
    School of Marine Engineering, Northwestern Polytechnical University, Xi'an 710072, China
    J. Mech. Strength, 2006, 1 (79-82):