Influence diagnostics for Student-t censored linear regression models

被引:28
|
作者
Massuia, Monique B. [1 ]
Barbosa Cabral, Celso Romulo [2 ]
Matos, Larissa A. [1 ]
Lachos, Victor H. [1 ]
机构
[1] Univ Estadual Campinas, Dept Estat, Campinas, SP, Brazil
[2] Univ Fed Amazonas, Dept Estat, Manaus, Amazonas, Brazil
基金
巴西圣保罗研究基金会;
关键词
censored regression model; EM algorithm; case-deletion model; local influence; LOCAL INFLUENCE ANALYSIS; INCOMPLETE-DATA; MOMENTS;
D O I
10.1080/02331888.2014.958489
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod.
引用
收藏
页码:1074 / 1094
页数:21
相关论文
共 50 条
  • [31] DSGE MODELS WITH STUDENT-t ERRORS
    Chib, Siddhartha
    Ramamurthy, Srikanth
    ECONOMETRIC REVIEWS, 2014, 33 (1-4) : 152 - 171
  • [32] Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student–t Distribution
    Alejandro Monzón Montoya
    Sankhya B, 2024, 86 : 91 - 108
  • [33] PREDICTION DISTRIBUTION FOR A LINEAR-REGRESSION MODEL WITH MULTIVARIATE STUDENT-T ERROR DISTRIBUTION
    HAQ, MS
    KHAN, S
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (12) : 4705 - 4712
  • [34] Inference and diagnostics for censored linear regression model with skewed generalized t distribution
    Lian, Chengdi
    Rong, Yaohua
    Liang, Jinwen
    Guan, Ruijie
    Cheng, Weihu
    JOURNAL OF APPLIED STATISTICS, 2025, 52 (02) : 477 - 508
  • [35] Estimation of slope for linear regression model with uncertain prior information and Student-t error
    Khan, Shahjahan
    Saleh, A. K. Md. E.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (16) : 2564 - 2581
  • [36] Influence diagnostics for the structural errors-in-variables model under the Student-t distribution
    Galea, M
    Bolfarine, H
    Vilca-Labra, F
    JOURNAL OF APPLIED STATISTICS, 2002, 29 (08) : 1191 - 1204
  • [37] Influence diagnostics for elliptical multivariate linear regression models
    Díaz-García, JA
    Rojas, MG
    Leiva-Sánchez, V
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (03) : 625 - 641
  • [38] Influence diagnostics in log-Birnbaum-Saunders regression models with censored data
    Leiva, Victor
    Barros, Michelli
    Paula, Gilberto A.
    Galea, Manuel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5694 - 5707
  • [39] Objective Bayesian analysis for the Student-t regression model
    Fonseca, Thais C. O.
    Ferreira, Marco A. R.
    Migon, Helio S.
    BIOMETRIKA, 2008, 95 (02) : 325 - 333
  • [40] Robust Gaussian Process Regression with a Student-t Likelihood
    Jylanki, Pasi
    Vanhatalo, Jarno
    Vehtari, Aki
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3227 - 3257