Estimation of slope for linear regression model with uncertain prior information and Student-t error

被引:9
|
作者
Khan, Shahjahan [1 ]
Saleh, A. K. Md. E. [2 ]
机构
[1] Univ So Queensland, Australian Ctr Sustainable Catchments, Dept Math & Comp, Toowoomba, Qld 4350, Australia
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
bias; mean square error and relative efficiency; incomplete beta ratio; mixture distribution of normal and inverted gamma; multiple regression model; non central chi-square and F distributions; preliminary test and shrinkage estimators; Student-t errors;
D O I
10.1080/03610920802040399
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers estimation of the slope parameter of the linear regression model with Student-t errors in the presence of uncertain prior information on the value of the unknown slope. Incorporating uncertain non sample prior information with the sample data the unrestricted, restricted, preliminary test, and shrinkage estimators are defined. The performances of the estimators are compared based on the criteria of unbiasedness and mean squared errors. Both analytical and graphical methods are explored. Although none of the estimators is uniformly superior to the others, if the non sample information is close to its true value, the shrinkage estimator over performs the rest of the estimators.
引用
收藏
页码:2564 / 2581
页数:18
相关论文
共 50 条
  • [1] PREDICTION DISTRIBUTION FOR A LINEAR-REGRESSION MODEL WITH MULTIVARIATE STUDENT-T ERROR DISTRIBUTION
    HAQ, MS
    KHAN, S
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (12) : 4705 - 4712
  • [2] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828
  • [3] Student-t Process Regression with Dependent Student-t Noise
    Tang, Qingtao
    Wang, Yisen
    Xia, Shu-Tao
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 82 - 89
  • [4] Objective Bayesian Analysis for the Student-t Linear Regression
    He, Daojiang
    Sun, Dongchu
    He, Lei
    [J]. BAYESIAN ANALYSIS, 2021, 16 (01): : 129 - 145
  • [5] Theoretical properties of Bayesian Student-t linear regression
    Gagnon, Philippe
    Hayashi, Yoshiko
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [6] Estimation of the intercept parameter for linear regression model with uncertain non-sample prior information
    Shahjahan Khan
    Zahirul Hoque
    A. K. Md. E Saleh
    [J]. Statistical Papers, 2005, 46 : 379 - 395
  • [7] Estimation of the intercept parameter for linear regression model with uncertain non-sample prior information
    Khan, S
    Hoque, Z
    Saleh, AKME
    [J]. STATISTICAL PAPERS, 2005, 46 (03) : 379 - 395
  • [8] Posterior property of Student-t linear regression model using objective priors
    Wang, Min
    Yang, Mingan
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 113 : 23 - 29
  • [9] Influence diagnostics for Student-t censored linear regression models
    Massuia, Monique B.
    Barbosa Cabral, Celso Romulo
    Matos, Larissa A.
    Lachos, Victor H.
    [J]. STATISTICS, 2015, 49 (05) : 1074 - 1094
  • [10] Student-t censored regression model: properties and inference
    Reinaldo B. Arellano-Valle
    Luis M. Castro
    Graciela González-Farías
    Karla A. Muñoz-Gajardo
    [J]. Statistical Methods & Applications, 2012, 21 : 453 - 473