Influence diagnostics for Student-t censored linear regression models

被引:28
|
作者
Massuia, Monique B. [1 ]
Barbosa Cabral, Celso Romulo [2 ]
Matos, Larissa A. [1 ]
Lachos, Victor H. [1 ]
机构
[1] Univ Estadual Campinas, Dept Estat, Campinas, SP, Brazil
[2] Univ Fed Amazonas, Dept Estat, Manaus, Amazonas, Brazil
基金
巴西圣保罗研究基金会;
关键词
censored regression model; EM algorithm; case-deletion model; local influence; LOCAL INFLUENCE ANALYSIS; INCOMPLETE-DATA; MOMENTS;
D O I
10.1080/02331888.2014.958489
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod.
引用
收藏
页码:1074 / 1094
页数:21
相关论文
共 50 条
  • [1] Censored autoregressive regression models with Student-t innovations
    Valeriano, Katherine A. L.
    Schumacher, Fernanda L.
    Galarza, Christian E.
    Matos, Larissa A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 804 - 828
  • [2] Influence diagnostics for skew-t censored linear regression models
    Oliveira, Marcos S.
    Oliveira, Daniela C. R.
    Lachos, Victor H.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (06) : 605 - 629
  • [3] A non-iterative Bayesian sampling algorithm for censored Student-t linear regression models
    Yuan, Haijing
    Yang, Fengkai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3337 - 3355
  • [4] Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student-t Distribution
    Montoya, Alejandro Monzon
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (01): : 91 - 108
  • [5] Student-t censored regression model: properties and inference
    Reinaldo B. Arellano-Valle
    Luis M. Castro
    Graciela González-Farías
    Karla A. Muñoz-Gajardo
    Statistical Methods & Applications, 2012, 21 : 453 - 473
  • [6] Student-t censored regression model: properties and inference
    Arellano-Valle, Reinaldo B.
    Castro, Luis M.
    Gonzalez-Farias, Graciela
    Munoz-Gajardo, Karla A.
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04): : 453 - 473
  • [7] Local influence for Student-t partially linear models
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1462 - 1478
  • [8] Detection of a change-point in student-t linear regression models
    Felipe Osorio
    Manuel Galea
    Statistical Papers, 2006, 47 : 31 - 48
  • [9] Detection of a change-point in student-t linear regression models
    Osorio, F
    Galea, M
    STATISTICAL PAPERS, 2006, 47 (01) : 31 - 48
  • [10] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828