Student-t censored regression model: properties and inference

被引:39
|
作者
Arellano-Valle, Reinaldo B. [2 ]
Castro, Luis M. [1 ]
Gonzalez-Farias, Graciela [3 ]
Munoz-Gajardo, Karla A. [2 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Estadist, Concepcion, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Dept Estadist, Santiago 22, Chile
[3] UANL, Res Ctr Math, CIDICS, Col Mitras Ctr Monterrey 64460, NL, Mexico
来源
STATISTICAL METHODS AND APPLICATIONS | 2012年 / 21卷 / 04期
关键词
ECM algorithm; Limited dependent variable; Maximum likelihood estimation; Student-t distribution; Tobit model; MAXIMUM-LIKELIHOOD; TOBIT-MODEL; DISTRIBUTIONS; VARIABLES; ALGORITHM; ECM; EM;
D O I
10.1007/s10260-012-0199-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In statistical analysis, particularly in econometrics, it is usual to consider regression models where the dependent variable is censored (limited). In particular, a censoring scheme to the left of zero is considered here. In this article, an extension of the classical normal censored model is developed by considering independent disturbances with identical Student-t distribution. In the context of maximum likelihood estimation, an expression for the expected information matrix is provided, and an efficient EM-type algorithm for the estimation of the model parameters is developed. In order to know what type of variables affect the income of housewives, the results and methods are applied to a real data set. A brief review on the normal censored regression model or Tobit model is also presented.
引用
收藏
页码:453 / 473
页数:21
相关论文
共 50 条
  • [1] Student-t censored regression model: properties and inference
    Reinaldo B. Arellano-Valle
    Luis M. Castro
    Graciela González-Farías
    Karla A. Muñoz-Gajardo
    [J]. Statistical Methods & Applications, 2012, 21 : 453 - 473
  • [2] Valid properties of truncated Student-t regression model with applications in analysis of censored data
    Zhang, Chi
    Tian, Guo-Liang
    Zhai, Yibo
    Fei, Yu
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (01) : 157 - 184
  • [3] Censored autoregressive regression models with Student-t innovations
    Valeriano, Katherine A. L.
    Schumacher, Fernanda L.
    Galarza, Christian E.
    Matos, Larissa A.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 804 - 828
  • [4] Influence diagnostics for Student-t censored linear regression models
    Massuia, Monique B.
    Barbosa Cabral, Celso Romulo
    Matos, Larissa A.
    Lachos, Victor H.
    [J]. STATISTICS, 2015, 49 (05) : 1074 - 1094
  • [5] Multivariate student-t regression models:: Pitfalls and inference
    Fernandez, C
    Steel, MFJ
    [J]. BIOMETRIKA, 1999, 86 (01) : 153 - 167
  • [6] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828
  • [7] Bayesian inference in the noncentral student-t model
    Tsionas, EG
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (01) : 208 - 221
  • [8] Student-t Process Regression with Dependent Student-t Noise
    Tang, Qingtao
    Wang, Yisen
    Xia, Shu-Tao
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 82 - 89
  • [9] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Lachos, Victor H.
    Cabral, Celso R. B.
    Prates, Marcos O.
    Dey, Dipak K.
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (01) : 123 - 152
  • [10] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Víctor H. Lachos
    Celso R. B. Cabral
    Marcos O. Prates
    Dipak K. Dey
    [J]. Computational Statistics, 2019, 34 : 123 - 152