DSGE MODELS WITH STUDENT-t ERRORS

被引:33
|
作者
Chib, Siddhartha [1 ]
Ramamurthy, Srikanth [2 ]
机构
[1] Washington Univ, Olin Business Sch, St Louis, MO 63130 USA
[2] Loyola Univ Maryland, Sellinger Sch Business, Baltimore, MD USA
关键词
Bayesian inference; Marginal likelihood; MCMC; Metropolis-Hastings; Particle-filtering; State-space model; Multivariate-student-t distribution; C01; C11; C15; C22; C32; E27; E37; E47; BAYESIAN-ANALYSIS; MARGINAL LIKELIHOOD; VOLATILITY; INFERENCE; SHOCKS;
D O I
10.1080/07474938.2013.807152
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper deals with Dynamic Stochastic General Equilibrium (DSGE) models under a multivariate student-t distribution for the structural shocks. Based on the solution algorithm of Klein (2000) and the gamma-normal representation of the t-distribution, the TaRB-MH algorithm of Chib and Ramamurthy (2010) is used to estimate the model. A technique for estimating the marginal likelihood of the DSGE student-t model is also provided. The methodologies are illustrated first with simulated data and then with the DSGE model of Ireland (2004) where the results support the t-error model in relation to the Gaussian model.
引用
收藏
页码:152 / 171
页数:20
相关论文
共 50 条
  • [1] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828
  • [2] Predictivistic characterizations of multivariate student-t models
    Loschi, RH
    Iglesias, PL
    Arellano-Valle, RB
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 85 (01) : 10 - 23
  • [3] Variational inference for Student-t MLP models
    Nguyen, Hang T.
    Nabney, Ian T.
    [J]. NEUROCOMPUTING, 2010, 73 (16-18) : 2989 - 2997
  • [4] Student-t Process Regression with Dependent Student-t Noise
    Tang, Qingtao
    Wang, Yisen
    Xia, Shu-Tao
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 82 - 89
  • [5] Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student-t Distribution
    Montoya, Alejandro Monzon
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (01): : 91 - 108
  • [6] Censored autoregressive regression models with Student-t innovations
    Valeriano, Katherine A. L.
    Schumacher, Fernanda L.
    Galarza, Christian E.
    Matos, Larissa A.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 804 - 828
  • [7] Local influence for Student-t partially linear models
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1462 - 1478
  • [8] Multivariate student-t regression models:: Pitfalls and inference
    Fernandez, C
    Steel, MFJ
    [J]. BIOMETRIKA, 1999, 86 (01) : 153 - 167
  • [9] A flexible prior distribution for Markov switching autoregressions with student-t errors
    Deschamps, Philippe J.
    [J]. JOURNAL OF ECONOMETRICS, 2006, 133 (01) : 153 - 190
  • [10] Influence diagnostics for Student-t censored linear regression models
    Massuia, Monique B.
    Barbosa Cabral, Celso Romulo
    Matos, Larissa A.
    Lachos, Victor H.
    [J]. STATISTICS, 2015, 49 (05) : 1074 - 1094