An efficient computational technique for local fractional Fokker Planck equation

被引:71
|
作者
Singh, Jagdev [1 ]
Jassim, Hassan Kamil [2 ]
Kumar, Devendra [3 ]
机构
[1] JECRC Univ, Dept Math, Jaipur, Rajasthan, India
[2] Univ Thi Qar, Fac Educ Pure Sci, Dept Math, Nasiryah, Iraq
[3] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
关键词
Fokker Planck equation; Series expansion method; Reduce differential transform method; Local fractional derivative operators;
D O I
10.1016/j.physa.2020.124525
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The key aim of the present study is to compute the solution of local fractional Fokker Planck equation (LFFPE) on the Cantor set. We perform a comparison between the reduced differential transform method (RDTM) and local fractional series expansion method (LFSEM) employed to the LFFPE. The operators are considered in the local nature. The outcomes demonstrate the important characteristic of the two techniques which are very successful and simple to solve the differential equations having fractional derivative operator of local nature. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL CONFINEMENT FORCE
    Lafleche, Laurent
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 164 - 196
  • [32] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [33] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [34] On fractional approximations of the Fokker–Planck equation for energetic particle transport
    Ashraf M. Tawfik
    The European Physical Journal Plus, 135
  • [35] Asymptotic behavior of Fokker-Planck-type a fractional equation
    Ren, Fu-Yao
    Liang, Jin-Rong
    Qiu, Wei-Yuan
    Xiao, Han-Bin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 : 165 - 173
  • [36] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [37] Fundamental solution of fractional Kolmogorov-Fokker-Planck equation
    He, Cong
    Chen, Jingchun
    Fang, Houzhang
    He, Huan
    EXAMPLES AND COUNTEREXAMPLES, 2021, 1
  • [38] The operator method for solving the fractional Fokker-Planck equation
    Elwakil, SA
    Zahran, MA
    Abdou, MA
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 77 (03): : 317 - 327
  • [39] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [40] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219