Tailoring the shape of GaN/AlxGa1-xN nanostructures to extend their luminescence in the visible range

被引:29
|
作者
Brault, J. [1 ]
Huault, T. [1 ,2 ]
Natali, F. [1 ,2 ]
Damilano, B. [1 ]
Lefebvre, D. [1 ]
Leroux, M. [1 ]
Korytov, M. [1 ,3 ]
Massies, J. [1 ]
机构
[1] Ctr Rech Heteroepitaxie & Ses Applicat, CNRS, F-06560 Valbonne, France
[2] RIBER SA, F-95873 Bezons, France
[3] Univ Nice Sophia Antipolis, F-06103 Nice, France
关键词
aluminium compounds; atomic force microscopy; gallium compounds; III-V semiconductors; molecular beam epitaxial growth; nanostructured materials; photoluminescence; semiconductor growth; semiconductor heterojunctions; wide band gap semiconductors; GAN QUANTUM DOTS; MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING DIODE; OPTICAL-PROPERTIES; GROWTH; RELAXATION; TRANSITION; SI(111); INAS; EFFICIENT;
D O I
10.1063/1.3075899
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show that the shape of GaN nanostructures grown by molecular beam epitaxy on AlxGa1-xN (0001) surfaces, for x >= 0.4, can be controlled via the ammonia pressure. The nanostructures are obtained from a two dimensional to three dimensional transition of a GaN layer occurring upon a growth interruption. Atomic force microscopy measurements show that depending on the ammonia pressure during the growth interruption, dot or dash-shaped nanostructures can be obtained. Low temperature photoluminescence measurements reveal a large redshift in the emission energy of the quantum dashes, as compared to the quantum dots. By simply adjusting the GaN deposited thickness, it is shown that quantum dashes enable to strongly extend the emission range of GaN/Al0.5Ga0.5N nanostructures from the violet-blue (similar to 400-470 nm) to the green-orange range (similar to 500-600 nm).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] AlxGa1-xN/GaN tuned distributed Bragg reflector
    Shi, W.
    Feng, Y.
    Chen, H.
    ELECTRONICS LETTERS, 2006, 42 (22) : 1306 - 1308
  • [32] Au/Ni/Al/Ti/AlxGa1-xN/GaN和Au/Pt/Al/Ti/AlxGa1-xN/GaN欧姆接触研究
    周慧梅
    沈波
    陈敦军
    陈堂胜
    焦刚
    郑有炓
    稀有金属, 2004, (03) : 487 - 490
  • [33] A Theoretical Calculation of the Impact of GaN Cap and AlxGa1-xN Barrier Thickness Fluctuations on Two-Dimensional Electron Gas in a GaN/AlxGa1-xN/GaN Heterostructure
    Liu, Guipeng
    Wu, Ju
    Lu, Yanwu
    Zhang, Biao
    Li, Chengming
    Sang, Ling
    Song, Yafeng
    Shi, Kai
    Liu, Xianglin
    Yang, Shaoyan
    Zhu, Qinsheng
    Wang, Zhanguo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) : 4272 - 4275
  • [34] MBE growth and properties of GaN and AlxGa1-xN on GaN/SiC substrates
    Johnson, MAL
    Fujita, S
    Rowland, WH
    Hughes, WC
    He, YW
    ElMasry, NA
    Cook, JW
    Schetzina, JF
    Ren, J
    Edmond, JA
    JOURNAL OF ELECTRONIC MATERIALS, 1996, 25 (05) : 793 - 797
  • [35] Structural and electrical characteristics of GaN, n-GaN and AlxGa1-xN
    Arivazhagan, P.
    Ramesh, R.
    Kumar, Ramadoss Roop
    Faulques, Eric
    Bennis, Fouad
    Baskar, K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 : 110 - 118
  • [36] Comparative study on performance of cubic AlxGa1-xN/GaN nanostructures MODFETs and MOS-MODFETs
    Bouguenna, Driss
    Stambouli, A. Boudghene
    Maaza, N. Melkkakia
    Zado, A.
    As, D. J.
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 62 : 260 - 268
  • [37] Doping of AlxGa1-xN
    Stampfl, C
    Van de Walle, CG
    APPLIED PHYSICS LETTERS, 1998, 72 (04) : 459 - 461
  • [38] Structural properties of InxGa1-xN/GaN and AlxGa1-xN/GaN MQWs studied by XRD
    Tagliente, MA
    Tapfer, L
    Waltereit, P
    Brandt, O
    Plogg, KH
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (10A) : A192 - A197
  • [39] Intrinsic AlxGa1-xN photodetectors for the entire compositional range
    Walker, D
    Zhang, X
    Saxler, A
    Kung, P
    Xu, J
    Razeghi, M
    PHOTODETECTORS: MATERIALS AND DEVICES II, 1997, 2999 : 267 - 274
  • [40] Complete characterization of AlxGa1-xN/InxGa1-xN/GaN devices by SIMS
    Huang, C
    Mitha, S
    Erickson, JW
    ClarkPhelps, R
    Sheng, J
    Gao, Y
    GALLIUM NITRIDE AND RELATED MATERIALS II, 1997, 468 : 281 - 285