Tailoring the shape of GaN/AlxGa1-xN nanostructures to extend their luminescence in the visible range

被引:29
|
作者
Brault, J. [1 ]
Huault, T. [1 ,2 ]
Natali, F. [1 ,2 ]
Damilano, B. [1 ]
Lefebvre, D. [1 ]
Leroux, M. [1 ]
Korytov, M. [1 ,3 ]
Massies, J. [1 ]
机构
[1] Ctr Rech Heteroepitaxie & Ses Applicat, CNRS, F-06560 Valbonne, France
[2] RIBER SA, F-95873 Bezons, France
[3] Univ Nice Sophia Antipolis, F-06103 Nice, France
关键词
aluminium compounds; atomic force microscopy; gallium compounds; III-V semiconductors; molecular beam epitaxial growth; nanostructured materials; photoluminescence; semiconductor growth; semiconductor heterojunctions; wide band gap semiconductors; GAN QUANTUM DOTS; MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING DIODE; OPTICAL-PROPERTIES; GROWTH; RELAXATION; TRANSITION; SI(111); INAS; EFFICIENT;
D O I
10.1063/1.3075899
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show that the shape of GaN nanostructures grown by molecular beam epitaxy on AlxGa1-xN (0001) surfaces, for x >= 0.4, can be controlled via the ammonia pressure. The nanostructures are obtained from a two dimensional to three dimensional transition of a GaN layer occurring upon a growth interruption. Atomic force microscopy measurements show that depending on the ammonia pressure during the growth interruption, dot or dash-shaped nanostructures can be obtained. Low temperature photoluminescence measurements reveal a large redshift in the emission energy of the quantum dashes, as compared to the quantum dots. By simply adjusting the GaN deposited thickness, it is shown that quantum dashes enable to strongly extend the emission range of GaN/Al0.5Ga0.5N nanostructures from the violet-blue (similar to 400-470 nm) to the green-orange range (similar to 500-600 nm).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] AlN, GaN, AlxGa1-xN nanotubes and GaN/AlxGa1-xN nanotube heterojunctions
    de Almeida, James M.
    Kar, Tapas
    Piquini, Paulo
    PHYSICS LETTERS A, 2010, 374 (06) : 877 - 881
  • [2] Piezoresistivity of AlxGa1-xN layers and AlxGa1-xN/GaN heterostructures
    Eickhoff, M
    Ambacher, O
    Krötz, G
    Stutzmann, M
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (07) : 3383 - 3386
  • [3] Surface states in the AlxGa1-xN barrier in AlxGa1-xN/GaN heterostructures
    Liu, J
    Shen, B
    Wang, MJ
    Zhou, YG
    Chen, DJ
    Zhang, R
    Shi, Y
    Zheng, YD
    CHINESE PHYSICS LETTERS, 2004, 21 (01) : 170 - 172
  • [4] Impurity luminescence of AlxGa1-xN
    Zhumakulov, U.
    Inorganic Materials (English translation of Izvestiya Akademii Nauk SSR - Neorganicheskie Materialy), 1987,
  • [5] IMPURITY LUMINESCENCE OF ALXGA1-XN
    ZHUMAKULOV, U
    INORGANIC MATERIALS, 1987, 23 (04) : 624 - 625
  • [6] Subband transitions in AlxGa1-xN/GaN/AlxGa1-xN and AlxGa1-xN/InN/AlGa1-xN single quantum wells
    Premaratne, K
    Gurusinghe, MN
    Andersson, TG
    SUPERLATTICES AND MICROSTRUCTURES, 2005, 38 (03) : 161 - 167
  • [7] Low temperature photoluminescence study of AlxGa1-xN/GaN/AlxGa1-xN heterostructure nanocolumns
    AbdelAll, Naglaa
    ElGhoul, Jaber
    Almokhtar, Mohamed
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (21)
  • [8] Influence of GaN template thickness and morphology on AlxGa1-xN luminescence properties
    Halidou, I.
    Toure, A.
    Nguyen, L.
    Bchetnia, A.
    El Jani, B.
    OPTICAL MATERIALS, 2013, 35 (05) : 988 - 992
  • [9] Optimization of optical gain in AlxGa1-xN/GaN/AlxGa1-xN strained quantum well laser
    Asgari, A.
    Dashti, S.
    OPTIK, 2012, 123 (17): : 1546 - 1549
  • [10] Electron mobility in AlxGa1-xN/GaN heterostructures
    Hsu, L.
    Walukiewicz, W.
    Physical Review B: Condensed Matter, 56 (03):