Moment Bounds for Large Autocovariance Matrices Under Dependence

被引:1
|
作者
Han, Fang [1 ]
Li, Yicheng [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Autocovariance matrix; Effective rank; Weak dependence; <mml; math><mml; mi>tau</mml; mi></mml; math>; documentclass[12pt]{minimal}; usepackage{amsmath}; usepackage{wasysym}; usepackage{amsfonts}; usepackage{amssymb}; usepackage{amsbsy}; usepackage{mathrsfs}; usepackage{upgreek}; setlength{; oddsidemargin}{-69pt}; begin{document}$$; tau $$; end{document}<inline-graphic xlink; href="10959_2019_922_Article_IEq1; gif; >-mixing; COMPONENT ANALYSIS; COVARIANCE; INEQUALITIES;
D O I
10.1007/s10959-019-00922-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The goal of this paper is to obtain expectation bounds for the deviation of large sample autocovariance matrices from their means under weak data dependence. While the accuracy of covariance matrix estimation corresponding to independent data has been well understood, much less is known in the case of dependent data. We make a step toward filling this gap and establish deviation bounds that depend only on the parameters controlling the "intrinsic dimension" of the data up to some logarithmic terms. Our results have immediate impacts on high-dimensional time-series analysis, and we apply them to high-dimensional linear VAR(d) model, vector-valued ARCH model, and a model used in Banna et al. (Random Matrices Theory Appl 5(2):1650006,2016).
引用
收藏
页码:1445 / 1492
页数:48
相关论文
共 50 条
  • [31] Another look at the moment method for large dimensional random matrices
    Bose, Arup
    Sen, Arnab
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 588 - 628
  • [32] Maximizing Probability Bounds Under Moment-Matching Restrictions
    Portnoy, Stephen
    AMERICAN STATISTICIAN, 2015, 69 (01): : 41 - 44
  • [33] Optimal guessing under nonextensive framework and associated moment bounds
    Ghosh, Abhik
    STATISTICS & PROBABILITY LETTERS, 2023, 197
  • [35] ESTIMATION OF AUTOCOVARIANCE MATRICES FOR INFINITE DIMENSIONAL VECTOR LINEAR PROCESS
    Bhattacharjee, Monika
    Bose, Arup
    JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (03) : 262 - 281
  • [36] Measurement Difference Autocovariance Method for Noise Covariance Matrices Estimation
    Dunik, Jindrich
    Straka, Ondrej
    Kost, Oliver
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 365 - 370
  • [37] Banded and tapered estimates for autocovariance matrices and the linear process bootstrap
    McMurry, Timothy L.
    Politis, Dimitris N.
    JOURNAL OF TIME SERIES ANALYSIS, 2010, 31 (06) : 471 - 482
  • [38] Comparing Large Covariance Matrices under Weak Conditions on the Dependence Structure and Its Application to Gene Clustering
    Chang, Jinyuan
    Zhou, Wen
    Zhou, Wen-Xin
    Wang, Lan
    BIOMETRICS, 2017, 73 (01) : 31 - 41
  • [39] Separation of Uncorrelated Stationary time series using Autocovariance Matrices
    Miettinen, Jari
    Illner, Katrin
    Nordhausen, Klaus
    Oja, Hannu
    Taskinen, Sara
    Theis, Fabian J.
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (03) : 337 - 354
  • [40] Smallest and largest generalized eigenvalues of large moment matrices and some applications
    Escribano, C.
    Gonzalo, R.
    Torrano, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)