Moment Bounds for Large Autocovariance Matrices Under Dependence

被引:1
|
作者
Han, Fang [1 ]
Li, Yicheng [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Autocovariance matrix; Effective rank; Weak dependence; <mml; math><mml; mi>tau</mml; mi></mml; math>; documentclass[12pt]{minimal}; usepackage{amsmath}; usepackage{wasysym}; usepackage{amsfonts}; usepackage{amssymb}; usepackage{amsbsy}; usepackage{mathrsfs}; usepackage{upgreek}; setlength{; oddsidemargin}{-69pt}; begin{document}$$; tau $$; end{document}<inline-graphic xlink; href="10959_2019_922_Article_IEq1; gif; >-mixing; COMPONENT ANALYSIS; COVARIANCE; INEQUALITIES;
D O I
10.1007/s10959-019-00922-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The goal of this paper is to obtain expectation bounds for the deviation of large sample autocovariance matrices from their means under weak data dependence. While the accuracy of covariance matrix estimation corresponding to independent data has been well understood, much less is known in the case of dependent data. We make a step toward filling this gap and establish deviation bounds that depend only on the parameters controlling the "intrinsic dimension" of the data up to some logarithmic terms. Our results have immediate impacts on high-dimensional time-series analysis, and we apply them to high-dimensional linear VAR(d) model, vector-valued ARCH model, and a model used in Banna et al. (Random Matrices Theory Appl 5(2):1650006,2016).
引用
收藏
页码:1445 / 1492
页数:48
相关论文
共 50 条
  • [41] On Optimal Bounds in the Local Semicircle Law under Four Moment Condition
    Gotze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2019, 99 (01) : 40 - 43
  • [42] On Optimal Bounds in the Local Semicircle Law under Four Moment Condition
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    Doklady Mathematics, 2019, 99 : 40 - 43
  • [43] BOUNDS FOR THE CONCENTRATION FUNCTIONS OF RANDOM SUMS UNDER RELAXED MOMENT CONDITIONS
    Korolev, V. Yu.
    Dorofeeva, A. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (01) : 84 - 97
  • [44] LARGE DEFLECTION OF BEAMS UNDER MOMENT GRADIENT
    CHUCHEEPSAKUL, S
    BUNCHAROEN, S
    WANG, CM
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1994, 120 (09): : 1848 - 1860
  • [45] Discussion of "High-dimensional autocovariance matrices and optimal linear prediction"
    Wu, Wei Biao
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 789 - 791
  • [46] On Autocovariance Least-Squares Method for Noise Covariance Matrices Estimation
    Dunik, Jindrich
    Straka, Ondrej
    Simandl, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 967 - 972
  • [47] Bounds for the eigenvalues of matrices
    Zou, Limin
    Jiang, Youyi
    Italian Journal of Pure and Applied Mathematics, 2014, 32 : 519 - 524
  • [48] BOUNDS FOR THE EIGENVALUES OF MATRICES
    Zou, Limin
    Jiang, Youyi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 519 - 524
  • [49] LOWER BOUNDS OF MATRICES
    STOER, J
    NUMERISCHE MATHEMATIK, 1968, 12 (02) : 146 - &
  • [50] LOWER BOUNDS FOR MATRICES
    BENNETT, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 82 : 81 - 98