Smallest and largest generalized eigenvalues of large moment matrices and some applications

被引:1
|
作者
Escribano, C. [1 ]
Gonzalo, R. [2 ]
Torrano, E. [2 ]
机构
[1] Univ Politecn Madrid, Escuela Tecn Super Ingn Informat & Ctr Computat Si, Dept Matemat Aplicada Tecnol Informac & Comunicac, Campus Montegancedo Boadilla Monte, Madrid 28660, Spain
[2] Univ Politecn Madrid, Escuela Tecn Super Ingn Informat, Dept Matemat Aplicada Tecnol Informac & Comunicac, Campus Montegancedo Boadilla Monte, Madrid 28660, Spain
关键词
Hermitian moment problem; Orthogonal polynomials; Smallest eigenvalue; Measures; Approximation by polynomials; LARGE HANKEL-MATRICES;
D O I
10.1016/j.jmaa.2022.126959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this work is to compare two Borel measures thorough their moment matrices using a new notion of smallest and largest generalized eigenvalues. With this approach we provide information in problems as the localization of the support of a measure. In particular, we prove that if a measure is comparable in an algebraic way with a measure in a Jordan curve then the curve is contained in its support. We obtain a description of the convex envelope of the support of a measure via certain Rayleigh quotients of certain infinite matrices. Finally some applications concerning polynomial approximation in mean square are given, generalizing previous results obtained by the authors.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Largest and smallest eigenvalues of matrices and some Hamiltonian properties of graphs
    Li, Rao
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 34 - 39
  • [2] SIMULTANEOUS COMPUTATION OF LARGEST AND SMALLEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE, SYMMETRIC MATRICES
    CULLUM, J
    SIAM REVIEW, 1978, 20 (03) : 623 - 623
  • [3] ON BOUNDS FOR THE SMALLEST AND THE LARGEST EIGENVALUES OF GCD AND LCM MATRICES
    Altinisik, Ercan
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 117 - 125
  • [5] Small eigenvalues of large Hermitian moment matrices
    Escribano, C.
    Gonzalo, R.
    Torrano, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) : 470 - 480
  • [6] Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices
    Heiny, Johannes
    Mikosch, Thomas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (08) : 2779 - 2815
  • [7] Large deviations for the largest eigenvalues and eigenvectors of spiked Gaussian random matrices
    Biroli, Giulio
    Guionnet, Alice
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 13
  • [8] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo TIAN
    Li-gong WANG
    You LU
    ActaMathematicaeApplicataeSinica, 2021, 37 (03) : 628 - 644
  • [9] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Tian, Xiao-guo
    Wang, Li-gong
    Lu, You
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 628 - 644
  • [10] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644