Polynomial modular Frobenius manifolds

被引:5
|
作者
Morrison, Ewan K. [1 ]
Strachan, Ian A. B. [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Frobenius manifolds; Modular functions; Foldings; Modular dynamical systems; JACOBI GROUPS; ORBIT SPACE;
D O I
10.1016/j.physd.2011.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The moduli space of Frobenius manifolds carries a natural involutive symmetry, and a distinguished class - so-called modular Frobenius manifolds - lie at the fixed points of this symmetry. In this paper a classification of semi-simple modular Frobenius manifolds which are polynomial in all but one of the variables is begun, and completed for three and four dimensional manifolds. The resulting examples may also be obtained from higher dimensional manifolds by a process of folding. The relationship of these results with orbifold quantum cohomology is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2145 / 2155
页数:11
相关论文
共 50 条
  • [1] Modular Frobenius Manifolds and their Invariant Flows
    Morrison, Ewan K.
    Strachan, Ian A. B.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (17) : 3957 - 3982
  • [2] Frobenius manifolds
    Hitchin, N
    GAUGE THEORY AND SYMPLECTIC GEOMETRY, 1997, 488 : 69 - 112
  • [3] Frobenius Manifolds in the Context of A-Manifolds
    Malakhaltsev, Mikhail
    Segovia, Carlos
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 127 - 140
  • [4] Weak Frobenius manifolds
    Hertling, C
    Manin, Y
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (06) : 277 - 286
  • [5] Modular Frobenius groups
    Kuisch, EB
    vanderWaall, RW
    MANUSCRIPTA MATHEMATICA, 1996, 90 (04) : 403 - 427
  • [6] A short introduction to Frobenius manifolds
    Magri, Franco
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 55 - 71
  • [7] Identification of two Frobenius manifolds
    Cao, HD
    Zhou, J
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (01) : 17 - 29
  • [8] A Frobenius theorem on convenient manifolds
    Teichmann, J
    MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02): : 159 - 167
  • [9] On the Frobenius manifolds for cusp singularities
    Takahashi, Atsushi
    Shiraishi, Yuuki
    ADVANCES IN MATHEMATICS, 2015, 273 : 485 - 522
  • [10] Frobenius Manifolds on Orbits Spaces
    Al-Maamari, Zainab
    Dinar, Yassir
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (03)