Polynomial modular Frobenius manifolds

被引:5
|
作者
Morrison, Ewan K. [1 ]
Strachan, Ian A. B. [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Frobenius manifolds; Modular functions; Foldings; Modular dynamical systems; JACOBI GROUPS; ORBIT SPACE;
D O I
10.1016/j.physd.2011.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The moduli space of Frobenius manifolds carries a natural involutive symmetry, and a distinguished class - so-called modular Frobenius manifolds - lie at the fixed points of this symmetry. In this paper a classification of semi-simple modular Frobenius manifolds which are polynomial in all but one of the variables is begun, and completed for three and four dimensional manifolds. The resulting examples may also be obtained from higher dimensional manifolds by a process of folding. The relationship of these results with orbifold quantum cohomology is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2145 / 2155
页数:11
相关论文
共 50 条
  • [41] A property of the Frobenius map of a polynomial ring
    Lyubeznik, Gennady
    Zhang, Wenliang
    Zhang, Yi
    COMMUTATIVE ALGEBRA AND ITS CONNECTIONS TO GEOMETRY, 2011, 555 : 137 - +
  • [42] The Frobenius Problem for Classes of Polynomial Solvability
    I. D. Kan
    Mathematical Notes, 2001, 70 : 771 - 778
  • [43] ON THE CHARACTERISTIC POLYNOMIAL OF THE FROBENIUS ON ETALE COHOMOLOGY
    Elsenhans, Andreas-Stephan
    Jahnel, Joerg
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (11) : 2161 - 2184
  • [44] ON THE GENERALIZED EULER-FROBENIUS POLYNOMIAL
    FENG, YY
    KOZAK, J
    JOURNAL OF APPROXIMATION THEORY, 1981, 32 (04) : 327 - 338
  • [45] Modular Frobenius pseudo-varieties
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    COLLECTANEA MATHEMATICA, 2023, 74 (01) : 133 - 147
  • [46] THE CLASSIFICATION OF SOME MODULAR FROBENIUS GROUPS
    Fan, Juanjuan
    Du, Ni
    Zeng, Jiwen
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 85 (01) : 11 - 18
  • [47] Modular Frobenius pseudo-varieties
    Aureliano M. Robles-Pérez
    José Carlos Rosales
    Collectanea Mathematica, 2023, 74 : 133 - 147
  • [48] FROBENIUS AUTOMORPHISMS OF MODULAR FUNCTION FIELDS
    LANG, S
    AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (01) : 165 - 173
  • [49] ON THE FROBENIUS NUMBER OF A MODULAR DIOPHANTINE INEQUALITY
    Rosales, J. C.
    Vasco, P.
    MATHEMATICA BOHEMICA, 2008, 133 (04): : 367 - 375
  • [50] POLYNOMIAL STRUCTURES ON MANIFOLDS
    PETRIDIS, NC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A170 - A170