Polynomial modular Frobenius manifolds

被引:5
|
作者
Morrison, Ewan K. [1 ]
Strachan, Ian A. B. [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Frobenius manifolds; Modular functions; Foldings; Modular dynamical systems; JACOBI GROUPS; ORBIT SPACE;
D O I
10.1016/j.physd.2011.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The moduli space of Frobenius manifolds carries a natural involutive symmetry, and a distinguished class - so-called modular Frobenius manifolds - lie at the fixed points of this symmetry. In this paper a classification of semi-simple modular Frobenius manifolds which are polynomial in all but one of the variables is begun, and completed for three and four dimensional manifolds. The resulting examples may also be obtained from higher dimensional manifolds by a process of folding. The relationship of these results with orbifold quantum cohomology is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2145 / 2155
页数:11
相关论文
共 50 条
  • [31] A Remark on Deformations of Hurwitz Frobenius Manifolds
    Buryak, Alexandr
    Shadrin, Sergey
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) : 243 - 252
  • [32] Frobenius manifolds and variance of the spectral numbers
    Hertling, C
    NEW DEVELOPMENTS IN SINGULARITY THEORY, 2001, 21 : 235 - 255
  • [33] The Abelian/Nonabelian correspondence and Frobenius manifolds
    Ionuţ Ciocan-Fontanine
    Bumsig Kim
    Claude Sabbah
    Inventiones mathematicae, 2008, 171 : 301 - 343
  • [34] Some algebraic examples of Frobenius manifolds
    Mironov, A. E.
    Taimanov, I. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (02) : 604 - 613
  • [35] Real Doubles of Hurwitz Frobenius manifolds
    Shramchenko, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (03) : 635 - 680
  • [36] “Real Doubles” of Hurwitz Frobenius Manifolds
    Vasilisa Shramchenko
    Communications in Mathematical Physics, 2005, 256 : 635 - 680
  • [37] Differential characters and characteristic polynomial of Frobenius
    Buium, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 485 : 209 - 219
  • [38] The Frobenius problem for classes of polynomial solvability
    Kan, ID
    MATHEMATICAL NOTES, 2001, 70 (5-6) : 771 - 778
  • [39] From Primitive Forms to Frobenius manifolds
    Saito, Kyoji
    Takahashi, Atsushi
    FROM HODGE THEORY TO INTEGRABILITY AND TQFT: TT*- GEOMETRY, 2008, 78 : 31 - +
  • [40] Primary invariants of Hurwitz Frobenius manifolds
    Dunin-Barkowski, P.
    Norbury, P.
    Orantin, N.
    Popolitov, A.
    Shadrin, S.
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 297 - 331