Frobenius manifolds

被引:0
|
作者
Hitchin, N
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In these lectures, some of the geometrical themes in the work of Boris Dubrovin on Frobenius manifolds are discussed. We focus principally on those aspects which have a symplectic flavour, including Hamiltonian flows on coadjoint orbits, Poisson structures on loop spaces, and the symplectic geometry of flat connections on a punctured sphere. A major theme is to study the problem of solving the differential equations for a Frobenius manifold, These are nonlinear equations which appear in disguise in many other branches of mathematics. We show how to reformulate the equations in terms of the problem of determining flat connections on surfaces with given holonomy, the classical subject of isomonodromic deformations.
引用
收藏
页码:69 / 112
页数:44
相关论文
共 50 条
  • [1] Frobenius Manifolds in the Context of A-Manifolds
    Malakhaltsev, Mikhail
    Segovia, Carlos
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 127 - 140
  • [2] Weak Frobenius manifolds
    Hertling, C
    Manin, Y
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (06) : 277 - 286
  • [3] A short introduction to Frobenius manifolds
    Magri, Franco
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 55 - 71
  • [4] Identification of two Frobenius manifolds
    Cao, HD
    Zhou, J
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (01) : 17 - 29
  • [5] A Frobenius theorem on convenient manifolds
    Teichmann, J
    MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02): : 159 - 167
  • [6] On the Frobenius manifolds for cusp singularities
    Takahashi, Atsushi
    Shiraishi, Yuuki
    ADVANCES IN MATHEMATICS, 2015, 273 : 485 - 522
  • [7] Frobenius Manifolds on Orbits Spaces
    Al-Maamari, Zainab
    Dinar, Yassir
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (03)
  • [8] Hamiltonian PDEs and Frobenius manifolds
    Dubrovin, B. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (06) : 999 - 1010
  • [9] Polynomial modular Frobenius manifolds
    Morrison, Ewan K.
    Strachan, Ian A. B.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (23-24) : 2145 - 2155
  • [10] A Frobenius Theorem on Convenient Manifolds
    Josef Teichmann
    Monatshefte für Mathematik, 2001, 134 : 159 - 167