Frobenius manifolds

被引:0
|
作者
Hitchin, N
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In these lectures, some of the geometrical themes in the work of Boris Dubrovin on Frobenius manifolds are discussed. We focus principally on those aspects which have a symplectic flavour, including Hamiltonian flows on coadjoint orbits, Poisson structures on loop spaces, and the symplectic geometry of flat connections on a punctured sphere. A major theme is to study the problem of solving the differential equations for a Frobenius manifold, These are nonlinear equations which appear in disguise in many other branches of mathematics. We show how to reformulate the equations in terms of the problem of determining flat connections on surfaces with given holonomy, the classical subject of isomonodromic deformations.
引用
收藏
页码:69 / 112
页数:44
相关论文
共 50 条
  • [21] Linear free divisors and Frobenius manifolds
    de Gregorio, Ignacio
    Mond, David
    Sevenheck, Christian
    COMPOSITIO MATHEMATICA, 2009, 145 (05) : 1305 - 1350
  • [22] The tensor product in the theory of Frobenius manifolds
    Kaufmann, RM
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (02) : 159 - 206
  • [23] On classification and construction of algebraic Frobenius manifolds
    Dinar, Yassir Ibrahim
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (09) : 1171 - 1185
  • [24] FROBENIUS MANIFOLDS FOR ELLIPTIC ROOT SYSTEMS
    Satake, Ikuo
    OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (01) : 301 - 330
  • [25] Some algebraic examples of Frobenius manifolds
    A. E. Mironov
    I. A. Taimanov
    Theoretical and Mathematical Physics, 2007, 151 : 604 - 613
  • [26] The abelian/nonabelian correspondence and Frobenius manifolds
    Ciocan-Fontanine, Ionut
    Kim, Bumsig
    Sabbah, Claude
    INVENTIONES MATHEMATICAE, 2008, 171 (02) : 301 - 343
  • [27] A Remark on Deformations of Hurwitz Frobenius Manifolds
    Buryak, Alexandr
    Shadrin, Sergey
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) : 243 - 252
  • [28] Frobenius manifolds and variance of the spectral numbers
    Hertling, C
    NEW DEVELOPMENTS IN SINGULARITY THEORY, 2001, 21 : 235 - 255
  • [29] The Abelian/Nonabelian correspondence and Frobenius manifolds
    Ionuţ Ciocan-Fontanine
    Bumsig Kim
    Claude Sabbah
    Inventiones mathematicae, 2008, 171 : 301 - 343
  • [30] Some algebraic examples of Frobenius manifolds
    Mironov, A. E.
    Taimanov, I. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (02) : 604 - 613