Assessing Stagnation Conditions and Identifying Trends in Magnetized Liner Inertial Fusion

被引:39
|
作者
Gomez, Matthew R. [1 ]
Slutz, Stephen A. [1 ]
Knapp, Patrick F. [1 ]
Hahn, Kelly D. [1 ,6 ]
Weis, Matthew R. [1 ]
Harding, Eric C. [1 ]
Geissel, Matthias [1 ]
Fein, Jeffrey R. [1 ]
Glinsky, Michael E. [1 ]
Hansen, Stephanie B. [2 ]
Harvey-Thompson, Adam J. [1 ]
Jennings, Christopher A. [1 ]
Smith, Ian C. [1 ]
Woodbury, Daniel [1 ,7 ]
Ampleford, David J. [1 ]
Awe, Thomas J. [1 ]
Chandler, Gordon A. [1 ]
Hess, Mark H. [1 ]
Lamppa, Derek C. [1 ]
Myers, Clayton E. [1 ]
Ruiz, Carlos L. [1 ]
Sefkow, Adam B. [1 ,8 ]
Schwarz, Jens [1 ]
Yager-Elorriaga, David A. [1 ]
Jones, Brent [1 ]
Porter, John L. [1 ]
Peterson, Kyle J. [3 ]
McBride, Ryan D. [1 ,9 ]
Rochau, Gregory A. [4 ]
Sinars, Daniel B. [5 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, ICF Target Design Grp, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, Radiat & Inertial Confinement Fus Target Design D, POB 5800, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Radiat & Fus Expt Dept, POB 5800, Albuquerque, NM 87185 USA
[5] Sandia Natl Labs, Radiat & Fus Phys Grp, POB 5800, Albuquerque, NM 87185 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[7] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[8] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[9] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
关键词
High-energy density physics; magnetic direct drive; Magnetized Liner Inertial Fusion (MagLIF); magnet-inertial fusion; Z Pulsed Power Facility; PHYSICS BASIS; IGNITION; TARGET; COMPRESSION; PLASMA;
D O I
10.1109/TPS.2019.2893517
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept, which is presently being studied on the Z Pulsed Power Facility. The concept utilizes an axial magnetic field and laser heating to produce fusion-relevant conditions at stagnation despite a peak magnetically driven implosion velocity of less than 100 km/s. Initial experiments demonstrated the viability of the concept but left open questions about the amount of laser energy coupled to the fuel and the role that mix played in the stagnation conditions. In this paper, simple methodologies for estimating the laser energy coupled to the fuel and determining the stagnation pressure and mix are presented. These tools enabled comparisons across many experiments to establish performance trends, as well as allow comparisons with 2-D magnetohydrodynamics simulations. The initial experiments were affected by low laser energy coupling (0.2-0.6 kJ), which resulted in reduced neutron yields (1-2 x 1012). In addition, all early experiments utilized mid-Z (aluminum) fuel-facing components. Mixing from these components had a significant impact on stagnation and increased with laser energy. Lower neutron yields (1-3 x 10(11)) were measured with higher laser coupling (0.8-1.2 kJ), which significantly deviated from the predicted scaling. When all fuel-facing components were made from a low-Z material (beryllium), neutron production increased (3.2 x 10(12)) and scaled as expected with laser energy; experimental yields were approximately 40% of simulated yields. In addition, roughly I-4 yield scaling was observed in experiments, where the load current was varied from 16-18 MA. These results represent the first step in experimental demonstration of stagnation performance scaling with input parameters in MagLIF.
引用
收藏
页码:2081 / 2101
页数:21
相关论文
共 50 条
  • [41] Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion
    Lewis, William E.
    Knapp, Patrick F.
    Slutz, Stephen A.
    Schmit, Paul F.
    Chandler, Gordon A.
    Gomez, Matthew R.
    Harvey-Thompson, Adam J.
    Mangan, Michael A.
    Ampleford, David J.
    Beckwith, Kristian
    PHYSICS OF PLASMAS, 2021, 28 (09)
  • [42] Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas
    Lynn, Alan G.
    Gilmore, Mark
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [43] Novel beryllium-scintillator, neutron-fluence detector for magnetized liner inertial fusion experiments
    Ruiz, C. L.
    Styron, J. D.
    Fehl, D. L.
    Hahn, K. D.
    McWatters, B.
    Mangan, M. A.
    Cooper, G. W.
    Vaughan, J. D.
    Chandler, G. A.
    Jones, B. M.
    Torres, J. A.
    Stutz, S. A.
    Ampleford, D. J.
    Gomez, M. R.
    Harding, E.
    Harvey-Thompson, A. J.
    Knapp, P. F.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (04):
  • [44] MAGNETIZED FUEL INERTIAL CONFINEMENT FUSION
    KILCREASE, DP
    KIRKPATRICK, RC
    NUCLEAR FUSION, 1988, 28 (08) : 1465 - 1468
  • [45] Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion
    Harvey-Thompson, A. J.
    Sefkow, A. B.
    Wei, M. S.
    Nagayama, T.
    Campbell, E. M.
    Blue, B. E.
    Heeter, R. F.
    Koning, J. M.
    Peterson, K. J.
    Schmitt, A.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [46] Observation and diagnostic application of Kr K-shell emission in magnetized liner inertial fusion experiments at Z
    Clapp, J. T.
    Mancini, R. C.
    Harding, E. C.
    Schaeuble, M. A.
    Harvey-Thompson, A. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (10):
  • [47] A pulsed-power implementation of "Laser Gate" for increasing laser energy coupling and fusion yield in magnetized liner inertial fusion (MagLIF)
    Miller, S. M.
    Slutz, S. A.
    Bland, S. N.
    Klein, S. R.
    Campbell, P. C.
    Woolstrum, J. M.
    Kuranz, C. C.
    Gomez, M. R.
    Jordan, N. M.
    McBride, R. D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (06):
  • [48] High-Gain Magnetized Inertial Fusion
    Slutz, Stephen A.
    Vesey, Roger A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [49] Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma
    Velikovich, A. L.
    Giuliani, J. L.
    Zalesak, S. T.
    PHYSICS OF PLASMAS, 2015, 22 (04)
  • [50] Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion
    Davies, J. R.
    Barnak, D. H.
    Betti, R.
    Campbell, E. M.
    Glebov, V. Yu.
    Hansen, E. C.
    Knauer, J. P.
    Peebles, J. L.
    Sefkow, A. B.
    PHYSICS OF PLASMAS, 2019, 26 (02)