Assessing Stagnation Conditions and Identifying Trends in Magnetized Liner Inertial Fusion

被引:39
|
作者
Gomez, Matthew R. [1 ]
Slutz, Stephen A. [1 ]
Knapp, Patrick F. [1 ]
Hahn, Kelly D. [1 ,6 ]
Weis, Matthew R. [1 ]
Harding, Eric C. [1 ]
Geissel, Matthias [1 ]
Fein, Jeffrey R. [1 ]
Glinsky, Michael E. [1 ]
Hansen, Stephanie B. [2 ]
Harvey-Thompson, Adam J. [1 ]
Jennings, Christopher A. [1 ]
Smith, Ian C. [1 ]
Woodbury, Daniel [1 ,7 ]
Ampleford, David J. [1 ]
Awe, Thomas J. [1 ]
Chandler, Gordon A. [1 ]
Hess, Mark H. [1 ]
Lamppa, Derek C. [1 ]
Myers, Clayton E. [1 ]
Ruiz, Carlos L. [1 ]
Sefkow, Adam B. [1 ,8 ]
Schwarz, Jens [1 ]
Yager-Elorriaga, David A. [1 ]
Jones, Brent [1 ]
Porter, John L. [1 ]
Peterson, Kyle J. [3 ]
McBride, Ryan D. [1 ,9 ]
Rochau, Gregory A. [4 ]
Sinars, Daniel B. [5 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, ICF Target Design Grp, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, Radiat & Inertial Confinement Fus Target Design D, POB 5800, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Radiat & Fus Expt Dept, POB 5800, Albuquerque, NM 87185 USA
[5] Sandia Natl Labs, Radiat & Fus Phys Grp, POB 5800, Albuquerque, NM 87185 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[7] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[8] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[9] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
关键词
High-energy density physics; magnetic direct drive; Magnetized Liner Inertial Fusion (MagLIF); magnet-inertial fusion; Z Pulsed Power Facility; PHYSICS BASIS; IGNITION; TARGET; COMPRESSION; PLASMA;
D O I
10.1109/TPS.2019.2893517
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept, which is presently being studied on the Z Pulsed Power Facility. The concept utilizes an axial magnetic field and laser heating to produce fusion-relevant conditions at stagnation despite a peak magnetically driven implosion velocity of less than 100 km/s. Initial experiments demonstrated the viability of the concept but left open questions about the amount of laser energy coupled to the fuel and the role that mix played in the stagnation conditions. In this paper, simple methodologies for estimating the laser energy coupled to the fuel and determining the stagnation pressure and mix are presented. These tools enabled comparisons across many experiments to establish performance trends, as well as allow comparisons with 2-D magnetohydrodynamics simulations. The initial experiments were affected by low laser energy coupling (0.2-0.6 kJ), which resulted in reduced neutron yields (1-2 x 1012). In addition, all early experiments utilized mid-Z (aluminum) fuel-facing components. Mixing from these components had a significant impact on stagnation and increased with laser energy. Lower neutron yields (1-3 x 10(11)) were measured with higher laser coupling (0.8-1.2 kJ), which significantly deviated from the predicted scaling. When all fuel-facing components were made from a low-Z material (beryllium), neutron production increased (3.2 x 10(12)) and scaled as expected with laser energy; experimental yields were approximately 40% of simulated yields. In addition, roughly I-4 yield scaling was observed in experiments, where the load current was varied from 16-18 MA. These results represent the first step in experimental demonstration of stagnation performance scaling with input parameters in MagLIF.
引用
收藏
页码:2081 / 2101
页数:21
相关论文
共 50 条
  • [21] Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
    Geissel, Matthias
    Awe, T. J.
    Bliss, D. E.
    Campbell, M. E.
    Gomez, M. R.
    Harding, E.
    Harvey-Thompson, A. J.
    Hansen, S. B.
    Jennings, C.
    Kimmel, M. W.
    Knapp, P.
    Lewis, S. M.
    McBride, R. D.
    Peterson, K.
    Schollmeier, M.
    Scoglietti, D. J.
    Sefkow, A. B.
    Shores, J. E.
    Sinars, D. B.
    Slutz, S. A.
    Smith, I. C.
    Speas, C. S.
    Vesey, R. A.
    Porter, J. L.
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS XV, 2016, 9731
  • [22] Design of dynamic screw pinch experiments for magnetized liner inertial fusion
    Shipley, G. A.
    Jennings, C. A.
    Schmit, P. F.
    PHYSICS OF PLASMAS, 2019, 26 (10)
  • [23] One-dimensional integrated simulations of magnetized liner inertial fusion
    Zhao Hai-Long
    Xiao Bo
    Wang Gang-Hua
    Wang Qiang
    Zhang Zheng-Wei
    Sun Qi-Zhi
    Deng Jian-Jun
    ACTA PHYSICA SINICA, 2020, 69 (03)
  • [24] Electrothermal effects on high-gain magnetized liner inertial fusion
    Chen, Shijia
    Yang, Xiaohu
    Wu, Fuyuan
    Ma, Yanyun
    Zhang, Guobo
    Yuan, Yun
    Cui, Ye
    Ramis, Rafael
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (11)
  • [25] Exploring magnetized liner inertial fusion with a semi-analytic model
    McBride, R. D.
    Slutz, S. A.
    Vesey, R. A.
    Gomez, M. R.
    Sefkow, A. B.
    Hansen, S. B.
    Knapp, P. F.
    Schmit, P. F.
    Geissel, M.
    Harvey-Thompson, A. J.
    Jennings, C. A.
    Harding, E. C.
    Awe, T. J.
    Rovang, D. C.
    Hahn, K. D.
    Martin, M. R.
    Cochrane, K. R.
    Peterson, K. J.
    Rochau, G. A.
    Porter, J. L.
    Stygar, W. A.
    Campbell, E. M.
    Nakhleh, C. W.
    Herrmann, M. C.
    Cuneo, M. E.
    Sinars, D. B.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [26] Controlling morphology and improving reproducibility of magnetized liner inertial fusion experiments
    Ampleford, D. J.
    Yager-Elorriaga, D. A.
    Jennings, C. A.
    Harding, E. C.
    Gomez, M. R.
    Harvey-Thompson, A. J.
    Awe, T. J.
    Chandler, G. A.
    Dunham, G. S.
    Geissel, M.
    Hahn, K. D.
    Hansen, S. B.
    Knapp, P. F.
    Lamppa, D. C.
    Lewis, W. E.
    Lucero, L.
    Mangan, M.
    Paguio, R.
    Perea, L.
    Robertson, G. A.
    Ruiz, C. L.
    Ruiz, D. E.
    Schmit, P. F.
    Slutz, S. A.
    Smith, G. E.
    Smith, I. C.
    Speas, C. S.
    Webb, T. J.
    Weis, M. R.
    Whittemore, K.
    Yu, E. P.
    Mcbride, R. D.
    Peterson, K. J.
    Jones, B. M.
    Rochau, G. A.
    Sinars, D. B.
    PHYSICS OF PLASMAS, 2024, 31 (02)
  • [27] Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
    Hahn, K. D.
    Chandler, G. A.
    Ruiz, C. L.
    Cooper, G. W.
    Gomez, M. R.
    Slutz, S.
    Sefkow, A. B.
    Sinars, D. B.
    Hansen, S. B.
    Knapp, P. F.
    Schmit, P. F.
    Harding, E.
    Jennings, C. A.
    Awe, T. J.
    Geissel, M.
    Rovang, D. C.
    Torres, J. A.
    Bur, J. A.
    Cuneo, M. E.
    Glebov, V. Yu
    Harvey-Thompson, A. J.
    Herrman, M. C.
    Hess, M. H.
    Johns, O.
    Jones, B.
    Lamppa, D. C.
    Lash, J. S.
    Martin, M. R.
    McBride, R. D.
    Peterson, K. J.
    Porter, J. L.
    Reneker, J.
    Robertson, G. K.
    Rochau, G. A.
    Savage, M. E.
    Smith, I. C.
    Styron, J. D.
    Vesey, R. A.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [28] Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program
    Awe, T. J.
    Shelton, K. P.
    Sefkow, A. B.
    Lamppa, D. C.
    Baker, J. L.
    Rovang, D. C.
    Robertson, G. K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (09):
  • [29] Statistical characterization of experimental magnetized liner inertial fusion stagnation images using deep-learning-based fuel-background segmentation
    Lewis, William E.
    Knapp, Patrick F.
    Harding, Eric C.
    Beckwith, Kristian
    JOURNAL OF PLASMA PHYSICS, 2022, 88 (05)
  • [30] The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion
    Appelbe, B.
    Pecover, J.
    Chittenden, J.
    HIGH ENERGY DENSITY PHYSICS, 2017, 22 : 27 - 36