Assessing Stagnation Conditions and Identifying Trends in Magnetized Liner Inertial Fusion

被引:39
|
作者
Gomez, Matthew R. [1 ]
Slutz, Stephen A. [1 ]
Knapp, Patrick F. [1 ]
Hahn, Kelly D. [1 ,6 ]
Weis, Matthew R. [1 ]
Harding, Eric C. [1 ]
Geissel, Matthias [1 ]
Fein, Jeffrey R. [1 ]
Glinsky, Michael E. [1 ]
Hansen, Stephanie B. [2 ]
Harvey-Thompson, Adam J. [1 ]
Jennings, Christopher A. [1 ]
Smith, Ian C. [1 ]
Woodbury, Daniel [1 ,7 ]
Ampleford, David J. [1 ]
Awe, Thomas J. [1 ]
Chandler, Gordon A. [1 ]
Hess, Mark H. [1 ]
Lamppa, Derek C. [1 ]
Myers, Clayton E. [1 ]
Ruiz, Carlos L. [1 ]
Sefkow, Adam B. [1 ,8 ]
Schwarz, Jens [1 ]
Yager-Elorriaga, David A. [1 ]
Jones, Brent [1 ]
Porter, John L. [1 ]
Peterson, Kyle J. [3 ]
McBride, Ryan D. [1 ,9 ]
Rochau, Gregory A. [4 ]
Sinars, Daniel B. [5 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, ICF Target Design Grp, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, Radiat & Inertial Confinement Fus Target Design D, POB 5800, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Radiat & Fus Expt Dept, POB 5800, Albuquerque, NM 87185 USA
[5] Sandia Natl Labs, Radiat & Fus Phys Grp, POB 5800, Albuquerque, NM 87185 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[7] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[8] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[9] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
关键词
High-energy density physics; magnetic direct drive; Magnetized Liner Inertial Fusion (MagLIF); magnet-inertial fusion; Z Pulsed Power Facility; PHYSICS BASIS; IGNITION; TARGET; COMPRESSION; PLASMA;
D O I
10.1109/TPS.2019.2893517
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept, which is presently being studied on the Z Pulsed Power Facility. The concept utilizes an axial magnetic field and laser heating to produce fusion-relevant conditions at stagnation despite a peak magnetically driven implosion velocity of less than 100 km/s. Initial experiments demonstrated the viability of the concept but left open questions about the amount of laser energy coupled to the fuel and the role that mix played in the stagnation conditions. In this paper, simple methodologies for estimating the laser energy coupled to the fuel and determining the stagnation pressure and mix are presented. These tools enabled comparisons across many experiments to establish performance trends, as well as allow comparisons with 2-D magnetohydrodynamics simulations. The initial experiments were affected by low laser energy coupling (0.2-0.6 kJ), which resulted in reduced neutron yields (1-2 x 1012). In addition, all early experiments utilized mid-Z (aluminum) fuel-facing components. Mixing from these components had a significant impact on stagnation and increased with laser energy. Lower neutron yields (1-3 x 10(11)) were measured with higher laser coupling (0.8-1.2 kJ), which significantly deviated from the predicted scaling. When all fuel-facing components were made from a low-Z material (beryllium), neutron production increased (3.2 x 10(12)) and scaled as expected with laser energy; experimental yields were approximately 40% of simulated yields. In addition, roughly I-4 yield scaling was observed in experiments, where the load current was varied from 16-18 MA. These results represent the first step in experimental demonstration of stagnation performance scaling with input parameters in MagLIF.
引用
收藏
页码:2081 / 2101
页数:21
相关论文
共 50 条
  • [31] Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
    Slutz, S. A.
    Stygar, W. A.
    Gomez, M. R.
    Peterson, K. J.
    Sefkow, A. B.
    Sinars, D. B.
    Vesey, R. A.
    Campbell, E. M.
    Betti, R.
    PHYSICS OF PLASMAS, 2016, 23 (02)
  • [32] Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion
    Davies, J. R.
    Bahr, R. E.
    Barnak, D. H.
    Betti, R.
    Bonino, M. J.
    Campbell, E. M.
    Hansen, E. C.
    Harding, D. R.
    Peebles, J. L.
    Sefkow, A. B.
    Seka, W.
    Chang, P. -Y.
    Geissel, M.
    Harvey-Thompson, A. J.
    PHYSICS OF PLASMAS, 2018, 25 (06)
  • [33] Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion
    Zhao Hai-Long
    Wang Gang-Hua
    Xiao Bo
    Wang Qiang
    Kan Ming-Xian
    Duan Shu-Chao
    Xie Long
    ACTA PHYSICA SINICA, 2021, 70 (13)
  • [34] Transport coefficient sensitivities in a semi-analytic model for magnetized liner inertial fusion
    Lawrence, Y.
    Davies, J. R.
    Mcbride, R. D.
    Sefkow, A. B.
    PHYSICS OF PLASMAS, 2024, 31 (11)
  • [35] Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform
    Harvey-Thompson, A. J.
    Geissel, M.
    Crabtree, J. A.
    Weis, M. R.
    Gomez, M. R.
    Fein, J. R.
    Lewis, W. E.
    Ampleford, D. J.
    Awe, T. J.
    Chandler, G. A.
    Galloway, B. R.
    Hansen, S. B.
    Hanson, J.
    Harding, E. C.
    Jennings, C. A.
    Kimmel, M.
    Knapp, P. F.
    Mangan, M. A.
    Maurer, A.
    Paguio, R. R.
    Perea, L.
    Peterson, K. J.
    Porter, J. L.
    Rambo, P. K.
    Robertson, G. K.
    Rochau, G. A.
    Ruiz, D. E.
    Shores, J. E.
    Slutz, S. A.
    Smith, G. E.
    Smith, I. C.
    Speas, C. S.
    Yager-Elorriaga, D. A.
    York, A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (05):
  • [36] Lasergate: A windowless gas target for enhanced laser preheat in magnetized liner inertial fusion
    Galloway, B. R.
    Slutz, S. A.
    Kimmel, M. W.
    Rambo, P. K.
    Schwarz, J.
    Geissel, M.
    Harvey-Thompson, A. J.
    Weis, M. R.
    Jennings, C. A.
    Field, E. S.
    Kletecka, D. E.
    Looker, Q.
    Colombo, A. P.
    Edens, A. D.
    Smith, I. C.
    Shores, J. E.
    Speas, C. S.
    Speas, R. J.
    Spann, A. P.
    Sin, J.
    Gautier, S.
    Sauget, V.
    Treadwell, P. A.
    Rochau, G. A.
    Porter, J. L.
    PHYSICS OF PLASMAS, 2021, 28 (11)
  • [37] Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments
    Ryutov, D. D.
    Cuneo, M. E.
    Herrmann, M. C.
    Sinars, D. B.
    Slutz, S. A.
    PHYSICS OF PLASMAS, 2012, 19 (06)
  • [38] Magnetized liner inertial fusion platform development to assess performance scaling with drive parameters
    Gomez, M. R.
    Slutz, S. A.
    Jennings, C. A.
    Harvey-Thompson, A. J.
    Weis, M. R.
    Lewis, W. E.
    Hutsel, B. T.
    Lamppa, D. C.
    Geissel, M.
    Crabtree, J. A.
    Awe, T. J.
    Yager-Elorriaga, D. A.
    Ruiz, D. E.
    Aragon, C.
    Benavidez, K. A.
    Chandler, G. A.
    Cordaro, S. W.
    Fein, J. R.
    Field, E. S.
    Hansen, S. B.
    Knapp, P. F.
    Jackson, J.
    Kaye, R. J.
    Lowinske, M.
    Lucero, L. M.
    Myers, C. E.
    Mangan, M. A.
    Mannion, O. M.
    Norris, B.
    Paguio, R. R.
    Perea, L.
    Porwitzky, A. J.
    Rambo, P. K.
    Robertson, G. K.
    Rovang, D. C.
    Sanchez, F.
    Savage, M. E.
    Schaeuble, M. -a.
    Shipley, G. A.
    Shores, J. E.
    Smith, G. E.
    Smith, I. C.
    Speas, C. S.
    Taylor, J.
    Tomlinson, K.
    Whittemore, K. A.
    Woolstrum, J. M.
    Yu, E. P.
    Ampleford, D. J.
    Beckwith, K.
    PHYSICS OF PLASMAS, 2025, 32 (03)
  • [39] Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion
    Carpenter, K. R.
    Mancini, R. C.
    Harding, E. C.
    Harvey-Thompson, A. J.
    Geissel, M.
    Weis, M. R.
    Hansen, S. B.
    Peterson, K. J.
    Rochau, G. A.
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [40] One-dimensional modeling and simulation of end loss effect in magnetized liner inertial fusion
    Zhao Hai-Long
    Xiao Bo
    Wang Gang-Hua
    Wang Qiang
    Kan Ming-Xian
    Duan Shu-Chao
    Xie Long
    Deng Jian-Jun
    ACTA PHYSICA SINICA, 2021, 70 (06)