Better bounds on the numerical radii of Hilbert space operators

被引:28
|
作者
Omidvar, Mohsen Erfanian [1 ]
Moradi, Hamid Reza [2 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Razavi Khorasan, Iran
[2] Islamic Azad Univ, Mashhad Branch, Young Researchers & Elite Club, Mashhad, Razavi Khorasan, Iran
关键词
Numerical radius; Operator norm; Operator convex function; Hermite-Hadamard inequality; NORM INEQUALITIES;
D O I
10.1016/j.laa.2020.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kittaneh proved that if A is a bounded linear operator on a complex Hilbert space, then 1/4 parallel to vertical bar A vertical bar(2) + vertical bar A*vertical bar(2)parallel to <= omega(2) (A), where omega(.) and parallel to.parallel to are the numerical radius and the usual operator norm, and vertical bar A vertical bar = (A*A)(1/2). In this paper, we show that 1/4 parallel to vertical bar A vertical bar(2) + vertical bar A vertical bar(2)parallel to <= 1/2 omega(2) (A)+1/8 parallel to(A+A*) (A-A*)parallel to <=omega(2) (A) Meanwhile, we give an improvement of the norm inequality presented by Bhatia and Kittaneh for the positive operators. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 50 条
  • [41] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Archiv der Mathematik, 2021, 117 : 537 - 546
  • [42] Norm and numerical radius inequalities for Hilbert space operators
    Baharak Moosavi
    Mohsen Shah Hosseini
    The Journal of Analysis, 2023, 31 : 1393 - 1400
  • [43] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wójcik, Pawel
    Linear Algebra and Its Applications, 2022, 609 : 114 - 128
  • [44] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496
  • [45] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 934 - 945
  • [46] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [47] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [48] Some sharp bounds for the Hilbert-Schmidt numerical radius of operators
    Soumia, Aici
    Abdelkader, Frakis
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (07) : 1481 - 1489
  • [49] New Bounds for the Euclidean Numerical Radius of Two Operators in Hilbert Spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    Furuichi, Shigeru
    SYMMETRY-BASEL, 2025, 17 (01):
  • [50] Some Upper Bounds for the Davis–Wielandt Radius of Hilbert Space Operators
    Ali Zamani
    Khalid Shebrawi
    Mediterranean Journal of Mathematics, 2020, 17