New Bounds for the Euclidean Numerical Radius of Two Operators in Hilbert Spaces

被引:0
|
作者
Altwaijry, Najla [1 ]
Dragomir, Silvestru Sever [2 ,3 ]
Feki, Kais [4 ]
Furuichi, Shigeru [5 ,6 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Appl Math Res Grp, ISILC, POB 14428, Melbourne, Vic 8001, Australia
[3] RMIT Univ, Sch Sci, Math Sci, GPO Box 2476V, Melbourne, Vic 3001, Australia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax 3018, Tunisia
[5] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, 3-25-40 Sakurajyousui,Setagaya Ku, Tokyo 1568550, Japan
[6] SIMATS Thandalam, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamilnadu, India
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
关键词
numerical radius; Davis-Wielandt radius; Euclidean numerical radius; operator inequalities; INEQUALITIES;
D O I
10.3390/sym17010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents new weighted lower and upper bounds for the Euclidean numerical radius of pairs of operators in Hilbert spaces. We show that some of these bounds improve on recent results in the literature. We also find new inequalities for the numerical radius and the Davis-Wielandt radius. The lower and upper bounds we obtain are not symmetrical.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] New upper bounds for the numerical radius of operators on Hilbert spaces
    Sahoo, Satyajit
    Rout, Nirmal Chandra
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)
  • [2] New upper bounds for the numerical radius of operators on Hilbert spaces
    Satyajit Sahoo
    Nirmal Chandra Rout
    Advances in Operator Theory, 2022, 7
  • [3] New bounds for the Euclidean operator radius of two Hilbert space operators with applications
    Ammar, Aicha
    Frakis, Abdelkader
    Kittaneh, Fuad
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [4] Improved Bounds for the Euclidean Numerical Radius of Operator Pairs in Hilbert Spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    MATHEMATICS, 2024, 12 (18)
  • [5] Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces
    Dragomir, Sever S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) : 256 - 264
  • [6] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [7] Upper bounds for the numerical radius of Hilbert space operators
    Akram Mansoori
    Mohsen Erfanian Omidvar
    Khalid Shebrawi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1473 - 1481
  • [8] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245
  • [9] Upper bounds for the numerical radius of Hilbert space operators
    Mansoori, Akram
    Omidvar, Mohsen Erfanian
    Shebrawi, Khalid
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1473 - 1481
  • [10] Generalized numerical radius inequalities of operators in Hilbert spaces
    Kais Feki
    Advances in Operator Theory, 2021, 6