Characterization of grain boundaries in multicrystalline silicon with high lateral resolution using conductive atomic force microscopy

被引:12
|
作者
Rumler, Maximilian [1 ]
Rommel, Mathias [1 ]
Erlekampf, Juergen [2 ]
Azizi, Maral [1 ]
Geiger, Tobias [1 ]
Bauer, Anton J. [1 ]
Meissner, Elke [1 ]
Frey, Lothar [1 ,2 ]
机构
[1] Fraunhofer Inst Integrated Syst & Device Technol, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Chair Elect Devices, D-91058 Erlangen, Germany
关键词
BEAM-INDUCED CURRENT; ELECTRICAL-PROPERTIES; RECOMBINATION; THIN;
D O I
10.1063/1.4746742
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, the electrical characteristics of grain boundaries (GBs) in multicrystalline silicon with and without iron contamination are analyzed by fixed voltage current maps and local I/V curves using conductive AFM (cAFM). I/V characteristics reveal the formation of a Schottky contact between the AFM tip and the sample surface. The impact of both, the polarity of the applied voltage and the illumination by the AFM laser on the behavior of GBs was analyzed systematically. Depending on the polarity of the applied voltage and the iron content of the sample, grain boundaries alter significantly the recorded current flow compared to the surrounding material. The results also show a clear influence of the AFM laser light on the electrical behavior of the grain boundaries. Conductive AFM measurements are furthermore compared to data obtained by electron beam induced current (EBIC), indicating that cAFM provides complimentary information. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4746742]
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy
    Kumar, Naveen
    Zhao, Cunlu
    Klaassen, Aram
    van den Ende, Dirk
    Mugele, Frieder
    Siretanu, Igor
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2016, 175 : 100 - 112
  • [22] Electrical characterization of silicon tips using conducting atomic force microscopy
    Xiao, XX
    Xiao, ZD
    Lu, ZH
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (08) : 1277 - 1280
  • [23] Jerky motion of grain boundaries in NiAl: An atomic force microscopy study
    Rabkin, E
    Semenov, V
    Izyumova, T
    [J]. SCRIPTA MATERIALIA, 2000, 42 (04) : 359 - 365
  • [24] Quantitative high resolution electron microscopy of grain boundaries
    Campbell, GH
    King, WE
    Cohen, D
    Carter, CB
    [J]. ATOMIC RESOLUTION MICROSCOPY OF SURFACES AND INTERFACES, 1997, 466 : 119 - 124
  • [25] ATOMIC RESOLUTION ATOMIC FORCE MICROSCOPY OF GRAPHITE AND THE NATIVE OXIDE ON SILICON
    MARTI, O
    DRAKE, B
    GOULD, S
    HANSMA, PK
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (02): : 287 - 290
  • [26] ATOMIC RESOLUTION ELECTRON-MICROSCOPY OF NIO GRAIN-BOUNDARIES
    MERKLE, KL
    SMITH, DJ
    [J]. ULTRAMICROSCOPY, 1987, 22 (1-4) : 57 - 70
  • [27] Tomographic imaging using conductive atomic force microscopy
    Toh, Alexander Kang-Jun
    Ng, Vivian
    [J]. MATERIALS CHARACTERIZATION, 2022, 186
  • [28] Materials characterization using high-frequency atomic force microscopy and friction force microscopy
    Scherer, V
    Janser, K
    Rabe, U
    Arnold, W
    Meissner, O
    [J]. REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 16A AND 16B, 1997, 16 : 1391 - 1398
  • [29] Nanometre resolution using high-resolution scanning electron microscopy corroborated by atomic force microscopy
    Stevens, Sam M.
    Cubillas, Pablo
    Jansson, Kjell
    Terasaki, Osamu
    Anderson, Michael W.
    Wright, Paul A.
    Castro, Maria
    [J]. CHEMICAL COMMUNICATIONS, 2008, (33) : 3894 - 3896
  • [30] A Method for Dispersion Degree Characterization Using Electro Conductive Mode of Atomic Force Microscopy
    Berzina, Astrida
    Tupureina, Velta
    Klemenoks, Igors
    Knite, Maris
    [J]. ICTE 2016, 2017, 104 : 338 - 345