Self-organizing map clustering based on continuous multiresolution entropy

被引:6
|
作者
Torres, HM
Gurlekian, JA
Rufiner, HL
Torres, ME [1 ]
机构
[1] Univ Nacl Entre Rios, Fac Ingn, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, Argentina
[2] Hosp Clin Buenos Aires, Lab Invest Sensoriales, Consejo Nacl Invest Cient & Tecn, Inst Neurosciencias Aplicadas, Buenos Aires, DF, Argentina
[3] Univ Nacl Entre Rios, Fac Ingn, Lab Cibernet, Oro Verde, Entre Rios, Argentina
关键词
wavelet transform; continuous multiresolution entropy; self-organizing maps; nonlinear systems; speech segmentation;
D O I
10.1016/j.physa.2005.05.073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The detection of changes in the parameter values of a nonlinear dynamic system is a branch of study with multiple applications. in this paper, we explore a variant of an automatic detector and clustering of slight parameter variations in nonlinear dynamic systems proposed by Torres et al. [Automatic detection of slight changes in nonlinear dynamical systems using multiresolution entropy tools, Int. J. Bifure. Chaos 11(4) (2001) 967-981]. The new method takes the advantages of the continuous multiresolution entropy to localize slight changes ill the parameters, and uses self-organizing maps to quantify and cluster these changes. We discuss the performance of this method while applied to automatic segmentation of natural and synthetic diphthongs in the presence of additive noise. Our results show the potentiality of the proposed method. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:337 / 354
页数:18
相关论文
共 50 条
  • [31] TCSOM: Clustering transactions using self-organizing map
    He, ZY
    Xu, XF
    Deng, SC
    [J]. NEURAL PROCESSING LETTERS, 2005, 22 (03) : 249 - 262
  • [32] A novel kernel Self-Organizing Map Algorithm for Clustering
    Chen, Ning
    Zhang, Hongyi
    Pu, Jiexin
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-7, CONFERENCE PROCEEDINGS, 2009, : 2978 - +
  • [33] BAYESIAN SELF-ORGANIZING MAP FOR DATA CLASSIFICATION AND CLUSTERING
    Guo, Xiaolian
    Wang, Haiying
    Glass, David H.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2013, 11 (05)
  • [34] A conditional clustering algorithm using self-organizing map
    Tateyama, T
    Kawata, S
    Ohta, H
    [J]. SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 3259 - 3264
  • [35] An Improved Self-Organizing Map for Bugs Data Clustering
    Ahmed, Attika
    Ghazali, Rozaida
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2016, : 135 - 140
  • [36] A Hybrid Collaborative Clustering Using Self-Organizing Map
    Filali, Ameni
    Jlassi, Chiraz
    Arous, Najet
    [J]. 2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 709 - 716
  • [37] An Enhancing Dynamic Self-Organizing Map for Data Clustering
    Wang, Ting
    Yu, Xinghuo
    Alahakoon, Damminda
    Fei, Shumin
    [J]. 2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 1324 - 1329
  • [38] Asymmetric -Means Clustering of the Asymmetric Self-Organizing Map
    Olszewski, Dominik
    [J]. NEURAL PROCESSING LETTERS, 2016, 43 (01) : 231 - 253
  • [39] SELF-ORGANIZING MAP FOR CLUSTERING OF REMOTE SENSING IMAGERY
    Stoical, Radu-Mihai
    Neagoe, Victor-Emil
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2014, 76 (01): : 69 - 80
  • [40] Self-organizing map and clustering for wastewater treatment monitoring
    García, HL
    González, LM
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (03) : 215 - 225