A Hybrid Collaborative Clustering Using Self-Organizing Map

被引:1
|
作者
Filali, Ameni [1 ]
Jlassi, Chiraz [1 ]
Arous, Najet [1 ]
机构
[1] Univ Tunis El Manar, Lab LIMTIC, Higher Inst Comp Sci, 2 Rue Abou Raihan El Bayrouni, Ariana 2080, Tunisia
关键词
Vertical collaboration; Horizontal collaboration; Hybrid collaboration; Clustering; Self-Organizing Map;
D O I
10.1109/AICCSA.2017.111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we introduce a novel hybrid collaboration clustering architecture, in which several subsets of patterns can be processed together with an objective of finding a common structure. The structure revealed at the global level is determined by exchanging prototypes of the subsets of data and by moving prototypes of the corresponding clusters toward each other. Thereby, it comprises a judicious integration of the principles of vertical and horizontal collaboration using the Self Organizing Map (SOM). A detailed clustering algorithm is developed by integrating the advantages of both collaboration clustering. The effectiveness of the algorithm, along with a comparison with other algorithms, has been demonstrated on a set of real life data sets. The power of collaboration between every pair of datasets is estimated by a parameter, we call coefficient of collaboration, to be determined iteratively during the collaboration phase using a steepest descent method based optimization, for the algorithm. Promising results discovered the deep impact observed at the individual clusters, permitting us to conclude that the global effect of the collaboration has been ameliorated. The proposed method has been validated on several datasets and experimental results have presented very promising performance.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 50 条
  • [1] A Fuzzy and Hybrid Clustering Framework using Self-organizing Map
    Chen, Ning
    Chen, An
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 82 - +
  • [2] Clustering method using self-organizing map
    Endo, M
    Ueno, M
    Tanabe, T
    Yamamoto, M
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 261 - 270
  • [3] Clustering of the self-organizing map
    Vesanto, J
    Alhoniemi, E
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 586 - 600
  • [4] TCSOM: Clustering transactions using self-organizing map
    He, ZY
    Xu, XF
    Deng, SC
    [J]. NEURAL PROCESSING LETTERS, 2005, 22 (03) : 249 - 262
  • [5] TCSOM: Clustering Transactions Using Self-Organizing Map
    Zengyou He
    Xiaofei Xu
    Shengchun Deng
    [J]. Neural Processing Letters, 2005, 22 : 249 - 262
  • [6] A conditional clustering algorithm using self-organizing map
    Tateyama, T
    Kawata, S
    Ohta, H
    [J]. SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 3259 - 3264
  • [7] Visual clustering of trademarks using the self-organizing map
    Hussain, M
    Eakins, J
    Sexton, G
    [J]. IMAGE AND VIDEO RETRIEVAL, 2002, 2383 : 147 - 156
  • [8] Clustering of the Self-Organizing Time Map
    Sarlin, Peter
    Yao, Zhiyuan
    [J]. NEUROCOMPUTING, 2013, 121 : 317 - 327
  • [9] Gravitational Clustering of the Self-Organizing Map
    Ilc, Nejc
    Dobnikar, Andrej
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT II, 2011, 6594 : 11 - 20
  • [10] Clustering and visualization of bankruptcy trajectory using self-organizing map
    Chen, Ning
    Ribeiro, Bernardete
    Vieira, Armando
    Chen, An
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (01) : 385 - 393